Skip to main content
Log in

Noncovalent Doping of Fullerene (C60) into ZnAl–LDH/PVA Matrix and Photocatalytic Degradation of Methylene Blue and Congo Red from Water

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this work fullerene (C60) was noncovalently doped to zinc–aluminum layered double hydroxide/polyvinyl alcohol (ZnAl–LDH/PVA) nanocomposites and the obtained samples were used for the photodegradation of methylene blue and congo red dyes from water solution. The structural, optical properties, surface morphology, specific surface area and chemical composition of C60 doped LDH were characterized by XRD, UV–Vis, PL, SEM, TEM and BET technique. The average crystallite size is increased from 8 to ~ 20 nm, and the dislocation density (δ) decreased from 0.0127 to ~ 0.003 nm2 by the increasing the amount of C60 doping 1% to 10%, 20% and 60%. Fullerene was used as a dopant and support material to improve the photocatalytic activity of LDH. The photodegradation parameters were determined with 1%, 10%, 20% and 60%wt of C60 doped LDH under visible-light. A complete photodegradation of MB (PD% =  ~ 99%) on the nanocomposites occurred during 10 h irradiation The photodegradation rate constant (kapp) is 0.024 min−1 for CR onto 1% C60 doped ZnAl–LDH/PVA. The results show that noncovalent doped C60 into ZnAl–LDH/PVA matrix reduces the recombination of electron–hole pairs and increases the efficiency of the photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D. Saju, T. Sabu, Layered Double Hydroxides: Fundamentals to Applications. in Layer Double Hydroxide Polym. Nanocomposites, pp. 1–68 (2020)

  2. D.G. Evans, R.C.T. Slade, Robert, Structural aspects of layered double hydroxides Structure and Bonding vol. 119, pp. 1–87 (2006)

  3. D. Takács, B. Katana, A. Szerlauth, D. Sebők, M. Tomšič, I. Szilágyi, Influence of adsorption of ionic liquid constituents on the stability of layered double hydroxide colloids. Soft Matter 17(40), 9116–9124 (2021). https://doi.org/10.1039/d1sm01074c

    Article  CAS  PubMed  Google Scholar 

  4. O.V. Nestroinia, I.G. Ryl’tsova, M.N. Yapryntsev, O.E. Lebedeva, Effect of the synthesis method on the phase composition and magnetism of layered double hydroxides. Inorg. Mater. 56(7), 747–753 (2020). https://doi.org/10.1134/S0020168520070109

    Article  CAS  Google Scholar 

  5. X. Li, X. Ma, X. Zhao, Preparation of Lignin–MgAl layered double hydroxide composites by hydrothermal method using lignin as carrier and intercalation modifier agent. Mater. Lett. 336, 133922 (2023). https://doi.org/10.1016/j.matlet.2023.133922

    Article  CAS  Google Scholar 

  6. A.V. Agafonov, V.D. Shibaeva, A.S. Kraev, N.A. Sirotkin, V.A. Titov, A.V. Khlyustova, Effects of the preparation method on the dielectric properties of Ni–Al layered double hydroxides. Russ. J. Inorg. Chem. (2023). https://doi.org/10.1134/S0036023622601842

    Article  Google Scholar 

  7. A.V. Agafonov, N.A. Sirotkin, V.A. Titov, A.V. Khlyustova, Underwater plasma synthesis of Zn–Al layered double hydroxides. Inorg. Mater. 58(11), 1137–1144 (2022). https://doi.org/10.1134/S0020168522110012

    Article  CAS  Google Scholar 

  8. L. Li, P. van Rijn, Fabrication and characterization of organically modified layered double hydroxide/poly (lactic acid) nanocomposite by sonication-assisted solution compounding method. Mater. Des. 233, 112196 (2023). https://doi.org/10.1016/j.matdes.2023.112196

    Article  CAS  Google Scholar 

  9. R. Eizi, T.R. Bastami, V. Mahmoudi, A. Ayati, H. Babaei, Facile ultrasound-assisted synthesis of CuFe-layered double hydroxides/g-C3N4 nanocomposite for Alizarin Red S sono-sorption. J. Taiwan Inst. Chem. Eng. 145, 104844 (2023). https://doi.org/10.1016/j.jtice.2023.104844

    Article  CAS  Google Scholar 

  10. H. Deng, H. Feng, G. Luo, R. Tu, Y. Zheng, Q. Shen, One-step corrosion method for preparing Ni–Fe layered double hydroxide on nickel foam: importance of the iron valence state. Mater. Lett. 316, 131999 (2022). https://doi.org/10.1016/j.matlet.2022.131999

    Article  CAS  Google Scholar 

  11. V. Yousefi, V. Tarhriz, S. Eyvazi, A. Dilmaghani, Synthesis and application of Magnetic@layered double hydroxide as an anti-inflammatory drugs nanocarrier. J. Nanobiotechnol. 18(1), 1–11 (2020). https://doi.org/10.1186/s12951-020-00718-y

    Article  CAS  Google Scholar 

  12. M. Molano-Mendoza, D. Donneys-Victoria, N. Marriaga-Cabrales, M.A. Mueses, G. Li Puma, F. Machuca-Martínez, Synthesis of Mg-Al layered double hydroxides by electrocoagulation. MethodsX 5, 915–923 (2018). https://doi.org/10.1016/j.mex.2018.07.019

    Article  PubMed  PubMed Central  Google Scholar 

  13. A. Smalenskaite, M.M. Kaba, I. Grigoraviciute-Puroniene, L. Mikoliunaite, A. Zarkov, R. Ramanauskas, I.A. Morkan, A. Kareiva, Sol-gel synthesis and characterization of coatings of Mg-Al layered double hydroxides. Materials 12(22), 3738 (2019). https://doi.org/10.3390/ma12223738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Z. Lu, L. Qian, W. Xu, Y. Tian, M. Jiang, Y. Li, X. Sun, X. Duan, Dehydrated layered double hydroxides: alcohothermal synthesis and oxygen evolution activity. Nano Res. 9(10), 3152–3161 (2016). https://doi.org/10.1007/s12274-016-1197-4

    Article  CAS  Google Scholar 

  15. R. Mendil, N. Nasrallah, Zn-Fe layered double hydroxides synthesized by Three (03) methods of coprecipitation: application to the removal of cochineal red dye from aqueous solution. Fibers Polym. 22(12), 3358–3367 (2021). https://doi.org/10.1007/s12221-021-0988-8

    Article  CAS  Google Scholar 

  16. S. Jamil, S.R. Khan, S. Ali, S. Bibi, R.A. Khan, W.A. Gill, M.R.S.A. Janjua, Synthesis of calcium-bismuth layered Double Hydroxide (LADH) nanoparticles: applications as photo-catalyst and fuel additive. Inorg. Chem. Commun. 157, 111331 (2023). https://doi.org/10.1016/j.inoche.2023.111331

    Article  CAS  Google Scholar 

  17. J. He, W. Xu, H. Liu, Q. Luo, J. Dai, Y. Xu, B. Zeng, G. Chen, C. Yuan, L. Dai, Preparation of a novel 2-Amino Benzothiazole loaded ZIF-8/layer double hydroxide composite and its application in anti-corrosion epoxy coatings. Prog. Org. Coat. 185, 107927 (2023). https://doi.org/10.1016/j.porgcoat.2023.107927

    Article  CAS  Google Scholar 

  18. A. Lozano-Lunar, R. Otero, J.I. Álvarez, J.R. Jiménez, J.M. Fernández-Rodríguez, Application of layer double hydroxide in cementitious matrices for the improvement of the double barrier technique in the immobilisation of lead waste. Appl. Clay Sci. 238, 106938 (2023). https://doi.org/10.1016/j.clay.2023.106938

    Article  CAS  Google Scholar 

  19. Y. Dai, N. Liu, C. Wang, X. Liu, Q. Jiang, Y. Liu, Y. Tian, J. Duan, B. Hou, NiCo-layered double hydroxide modified TiO2 nanotube arrays and its application in photoelectrochemical cathodic protection of 304 stainless steel. Colloids Surf. A 680, 132633 (2024). https://doi.org/10.1016/j.colsurfa.2023.132633

    Article  CAS  Google Scholar 

  20. I. Hagarová, L. Nemček, Analytical application of layered double hydroxides as high-capacity sorbents in dispersive solid phase extraction for the separation and preconcentration of (ultra)trace heavy metals. Crit. Rev. Anal. Chem. (2023). https://doi.org/10.1080/10408347.2023.2227906

    Article  PubMed  Google Scholar 

  21. Y. Fu, X. Fu, W. Song, Y. Li, X. Li, L. Yan, Recent progress of layered double hydroxide-based materials in wastewater treatment. Materials (2023). https://doi.org/10.3390/ma16165723

    Article  PubMed  PubMed Central  Google Scholar 

  22. Q. Wang, D. Ohare, Recent advances in the synthesis and application of Layered Double Hydroxide (LDH) nanosheets. Chem. Rev. 112(7), 4124–4155 (2012). https://doi.org/10.1021/cr200434v

    Article  CAS  PubMed  Google Scholar 

  23. H. Beneš, M. Konefał, S. Bujok, O. Mrózek, E. Pavlova, D. Smržová, P. Ecorchard, Intercalation of ionic liquids into LDH structures for microwave-accelerated polymerizations. Inorg. Chem. 62(36), 14694–14703 (2023). https://doi.org/10.1021/acs.inorgchem.3c02021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Y. Zhu, M. Laipan, R. Zhu, T. Xu, J. Liu, J. Zhu, Y. Xi, G. Zhu, H. He, Enhanced photocatalytic activity of Zn/Ti-LDH via hybridizing with C60. Mol. Catal. 427, 54–61 (2017). https://doi.org/10.1016/j.molcata.2016.11.031

    Article  CAS  Google Scholar 

  25. M.M. Kandy, Carbon-based photocatalysts for enhanced photocatalytic reduction of CO2 to solar fuels. Sustain. Energy Fuels 4(2), 469–484 (2020). https://doi.org/10.1039/c9se00827f

    Article  CAS  Google Scholar 

  26. L.T. Ju, P.X. Wu, Q.L. Yang, Z. Ahmed, N.W. Zhu, Synthesis of ZnAlTi-LDO supported C60@AgCl nanoparticles and theirphotocatalytic activity for photo-degradation of Bisphenol A. Appl. Catal. B 224, 159–174 (2018)

    Article  CAS  Google Scholar 

  27. L. Ju, P. Wu, X. Lai, S. Yang, B. Gong, M. Chen, Synthesis and characterization of fullerene modified ZnAlTi-LDO in photo-degradation of bisphenol A under simulated visible light irradiation. Environ. Pollut. 228, 234–244 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. G. Zhang, X. Zhang, Y. Meng, G. Pan, Z. Ni, S. Xia, Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: a review. Chem. Eng. J. 392, 123684 (2020). https://doi.org/10.1016/j.cej.2019.123684

    Article  CAS  Google Scholar 

  29. S.A.S. Paniyarasi, S.K. Suja, R.N. Elizabeth, Doping and surface modification enhance the applicability of nanostructured fullerene–MWCNT hybrid draped LiNi0.1Mg0.1Co0.8O2 as high efficient cathode material for lithium-ion batteries. J. Inorg. Organomet. Polym. 31, 3976–3990 (2021). https://doi.org/10.1007/s10904-021-02039-5

    Article  CAS  Google Scholar 

  30. X. Sang, Q. Zha, X. Nie, D. Liu, Y. Guo, X. Shi, C. Ni, Interfacial growth of metal-organic framework on carboxyl-functionalized carbon nanotubes for efficient dye adsorption and separation. Anal. Methods 12(37), 4534–4540 (2020). https://doi.org/10.1039/d0ay01249a

    Article  CAS  PubMed  Google Scholar 

  31. M. Athari, M. Fattahi, M. Khosravi-Nikou, A. Hajhariri, Adsorption of different anionic and cationic dyes by hybrid nanocomposites of carbon nanotube and graphene materials over UiO-66. Sci. Rep. 12(1), 20415 (2022). https://doi.org/10.1038/s41598-022-24891-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. P. McElfresh, M. Wood, D. Ector, Stabilizing nano particle dispersions in high salinity, high temperature downhole environments. Soc. Pet. Eng.-SPE Int. Oilf. Nanotechnol. Conf. 2012, 40–45 (2012). https://doi.org/10.2118/154758-ms

  33. P. Tavakoli, S.R. Shadizadeh, F. Hayati, M. Fattahi, Effects of synthesized nanoparticles and henna-tragacanth solutions on oil/water interfacial tension: nanofluids stability considerations. Petroleum 6(3), 293–303 (2020). https://doi.org/10.1016/j.petlm.2020.03.001

    Article  Google Scholar 

  34. L. Fang, W. Li, H. Chen, F. Xiao, L. Huang, P.E. Holm, H.C.B. Hansen, D. Wang, Synergistic effect of humic and fulvic acids on Ni removal by the calcined Mg/Al layered double hydroxide. RSC Adv. 5(24), 18866–18874 (2015). https://doi.org/10.1039/c4ra15406a

    Article  CAS  Google Scholar 

  35. L. Li, W. Gu, J. Liu, S. Yan, Z.P. Xu, Amine-functionalized SiO2 nanodot-coated layered double hydroxide nanocomposites for enhanced gene delivery. Nano Res. 8(2), 682–694 (2015). https://doi.org/10.1007/s12274-014-0552-6

    Article  CAS  Google Scholar 

  36. L. Li, E. Warszawik, PH-triggered release and degradation mechanism of layered double hydroxides with high loading capacity. Adv. Mater. Interfaces 10(8), 2202396 (2023). https://doi.org/10.1002/admi.202202396

    Article  CAS  Google Scholar 

  37. Y.H. Kim, X. Jin, S.J. Hwang, Fullerene as an efficient hybridization matrix for exploring high-performance layered-double-hydroxide-based electrodes. J. Mater. Chem. A 7(18), 10971–10979 (2019). https://doi.org/10.1039/c9ta01532a

    Article  CAS  Google Scholar 

  38. I. Langmuir, The constitution and fundamental properties of solids and liquids. J. Franklin Inst. 183, 102–105 (1917). https://doi.org/10.1016/S0016-0032(17)90938-X

    Article  Google Scholar 

  39. H.M.F. Freundlich, Over the adsorption in solution. J. Phys. Chem. 57, 1100 (1906)

    Google Scholar 

  40. M.I. Tempkin, V.J. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys. Chim. USSR 12, 327 (1940)

    Google Scholar 

  41. M.M. Dubinin, The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60, 235 (1960). https://doi.org/10.1021/cr60204a006

    Article  CAS  Google Scholar 

  42. W. Jadaa, A. Prakash, A.K. Ray, Photocatalytic degradation of diazo dye over suspended and immobilized TiO2 catalyst in swirl flow reactor: kinetic modeling. Processes (2021). https://doi.org/10.3390/pr9101741

    Article  Google Scholar 

  43. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B 31, 145–157 (2001)

    Article  CAS  Google Scholar 

  44. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of Azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B 49(1), 1–14 (2004). https://doi.org/10.1016/j.apcatb.2003.11.010

    Article  CAS  Google Scholar 

  45. S. Khezrianjoo, H. Revanasiddappa, Langmuir-Hinshelwood kinetic expression for the photocatalytic degradation of metanil yellow aqueous solutions by ZnO catalyst. Chem. Sci. J. 2012, 85–85 (2012)

    Google Scholar 

  46. O.O. Balayeva, Photocatalytic degradation of Ponceau 4R by ZnAl-layered double hydroxide nanostructures obtained with and without polyvinyl alcohol. J. Chin. Chem. Soc. 69(9), 1594–1607 (2022). https://doi.org/10.1002/jccs.202200121

    Article  CAS  Google Scholar 

  47. P. Scherrer, Nachrichten von Der Gesellschaft Der Wissenschaften Zu Göttingen. Mathematisch-Physikalische Klasse. Math. Phys. Klasse 2, 98–100 (1918)

    Google Scholar 

  48. W.H. Bragg, W.L. Bragg, The reflection of X-rays by crystals. Proc. R. Soc. Lond. Ser. A 88(605), 428–438 (1913). https://doi.org/10.1098/rspa.1913.0040

    Article  CAS  Google Scholar 

  49. C. Suryanarayana, M. Grant Norton, X-ray Diffraction: A Practical Approach (Springer, New York, 1998)

    Book  Google Scholar 

  50. S. Adachi, Handbook on Physical Properties of Semiconductors (Springer, New York, 2004)

    Google Scholar 

  51. J.M. Zhang, Y. Zhang, K.W. Xu, V. Ji, General compliance transformation relation and applications for anisotropic hexagonal metals. Solid State Commun. 139(3), 87–91 (2006). https://doi.org/10.1016/j.ssc.2006.05.026

    Article  CAS  Google Scholar 

  52. V. Mote, Y. Purushotham, B. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theoret. Appl. Phys. 6(1), 1–8 (2012). https://doi.org/10.1186/2251-7235-6-6

    Article  Google Scholar 

  53. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, New York, 1985)

    Google Scholar 

  54. S. Mustapha, M.M. Ndamitso, A.S. Abdulkareem, J.O. Tijani, D.T. Shuaib, A.K. Mohammed, A. Sumaila, Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. (2019). https://doi.org/10.1088/2043-6254/ab52f7

    Article  Google Scholar 

  55. J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8–10, 569–585 (1972). https://doi.org/10.1016/0022-3093(72)90194-9

    Article  Google Scholar 

  56. M.M. Ba-Abbad, M.S. Takriff, A.W. Mohammad, Enhancement of 2-chlorophenol photocatalytic degradation in the presence Co2+-doped ZnO nanoparticles under direct solar radiation. Res. Chem. Intermed. 42(6), 5219–5236 (2016). https://doi.org/10.1007/s11164-015-2352-3

    Article  CAS  Google Scholar 

  57. O.O. Balayeva, A.A. Azizov, M.B. Muradov, R.M. Alosmanov, G.Q. Mursalova, K.S. Rahimli, Z.A. Aghamaliyev, Synthesis of Zinc-Aluminum mixed oxide/polyvinyl alcohol (ZnAl mixed oxide/PVA) and application in Pb(II) removal from aqueous solution. J. Dispers. Sci. Technol. 42(10), 1482–1493 (2021). https://doi.org/10.1080/01932691.2020.1773848

    Article  CAS  Google Scholar 

  58. A. Kumar, A. Podhorodecki, J. Misiewicz, D.K. Avasthi, J.C. Pivin, Modification of molecular transitions in fullerene films under ion impacts. J. Appl. Phys. 105(2), 3074104 (2009). https://doi.org/10.1063/1.3074104

    Article  CAS  Google Scholar 

  59. O.O. Balayeva, A.A. Azizov, M.B. Muradov, R.M. Alosmanov, Removal of Tartrazine, Ponceau 4R and patent blue V hazardous food dyes from aqueous solutions with ZnAl-LDH/PVA nanocomposite. J. Dispers. Sci. Technol. 44(7), 1133–1146 (2023). https://doi.org/10.1080/01932691.2021.2006688

    Article  CAS  Google Scholar 

  60. P. Huang, J. Liu, F. Wei, Y. Zhu, X. Wang, C. Cao, W. Song, Size-selective adsorption of anionic dyes induced by the layer space in layered double hydroxide hollow microspheres. Mater. Chem. Front. 1(8), 1550–1555 (2017). https://doi.org/10.1039/c7qm00079k

    Article  CAS  Google Scholar 

  61. S. Mallakpour, E. Azadi, M. Dinari, Removal of cationic and anionic dyes using Ca-alginate and Zn-Al layered double hydroxide/metal-organic framework. Carbohydr. Polym. 301, 120362 (2023). https://doi.org/10.1016/j.carbpol.2022.120362

    Article  CAS  PubMed  Google Scholar 

  62. E. Rápó, S. Tonk, Factors affecting synthetic dye adsorption; desorption studies: a review of results from the last five years (2017–2021). Molecules 26(17), 5419 (2021). https://doi.org/10.3390/molecules26175419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. K. Anand, R. Thangaraj, P. Kumar, J. Kaur, R.C. Singh, Synthesis, characterization, photocatalytic activity and ethanol-sensing properties of In2O3 and Eu3+:In2O3 nanoparticles. AIP Conf. Proc. (2015). https://doi.org/10.1063/1.4915447

    Article  Google Scholar 

  64. S. Jabeen, J. Iqbal, A. Arshad, M.S. Awan, M.F. Warsi, (In1-XFex)2O3 nanostructures for photocatalytic degradation of various dyes. Mater. Chem. Phys. 243, 122516 (2020). https://doi.org/10.1016/j.matchemphys.2019.122516

    Article  CAS  Google Scholar 

  65. K. Abderrazek, N.F. Srasra, E. Srasra, Photocatalytic decolourization of methylene blue using [Zn-Al] layered double hydroxides synthesized at different molar cationic ratios. Clay Miner. 52(2), 203–215 (2017). https://doi.org/10.1180/claymin.2017.052.2.03

    Article  CAS  Google Scholar 

  66. G. Pan, M. Xu, K. Zhou, Y. Meng, H. Chen, Y. Guo, T. Wu, Photocatalytic degradation of methylene blue over layered double hydroxides using various divalent metal ions. Clays Clay Miner. 67(4), 340–347 (2019). https://doi.org/10.1007/s42860-019-00031-2

    Article  CAS  Google Scholar 

  67. L. Ćurković, D. Ljubas, H. Juretić, Photocatalytic decolorization kinetics of Diazo Dye Congo red aqueous solution by UV/TiO2 nanoparticles. React. Kinet. Mech. Catal. 99(1), 201–208 (2010). https://doi.org/10.1007/s11144-009-0098-x

    Article  CAS  Google Scholar 

  68. G. Huang, J. Chen, D. Wang, Y. Sun, L. Jiang, Y. Yu, J. Zhou, S. Ma, Y. Kang, Nb2O5/ZnAl-LDH composites and its calcined products for photocatalytic degradation of congo red under visible light irradiation. Mater. Lett. 173, 227–230 (2016). https://doi.org/10.1016/j.matlet.2016.03.073

    Article  CAS  Google Scholar 

  69. S. Argote-Fuentes, R. Feria-Reyes, E. Ramos-Ramírez, N. Gutiérrez-Ortega, G. Cruz-Jiménez, Photoelectrocatalytic degradation of Congo Red Dye with activated hydrotalcites and copper anode. Catalysts 11(2), 1–19 (2021). https://doi.org/10.3390/catal11020211

    Article  CAS  Google Scholar 

  70. P. Ju, P. Wang, B. Li, H. Fan, S. Ai, D. Zhang, Y. Wang, A novel calcined Bi2WO6/BiVO4 heterojunction photocatalyst with highly enhanced photocatalytic activity. Chem. Eng. J. 236, 430–437 (2014). https://doi.org/10.1016/j.cej.2013.10.001

    Article  CAS  Google Scholar 

  71. M.B. Muradov, S.J. Mammadyarova, G.M. Eyvazova, O.O. Balayeva, I. Hasanova, G. Aliyeva, S.Z. Melikova, M.I. Abdullayev, The effect of Cu doping on structural, optical properties and photocatalytic activity of Co3O4 nanoparticles synthesized by sonochemical method. Opt. Mater. 142, 114001 (2023). https://doi.org/10.1016/j.optmat.2023.114001

    Article  CAS  Google Scholar 

  72. R. Saleh, A. Taufik, Degradation of methylene blue and Congo-Red dyes using fenton, photo-fenton, sono-fenton, and sonophoto-fenton methods in the presence of iron(II, III) oxide/zinc oxide/graphene (Fe3O4/ZnO/graphene) composites. Sep. Purif. Technol. 210, 563–573 (2019). https://doi.org/10.1016/j.seppur.2018.08.030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the High Molecular Compounds Chemistry sub-department (BSU) for laboratory facilities. The authors also thank Dr. Sevinj Mammadyarova, Dr. Lala Gahramanli, Dr. Sevinj Nuriyeva from Nano-Research laboratory, BSU; Dr. Sima Zulfugarova and Dr. Mirheydar Abbasov from Institute of Catalysis and Inorganic Chemistry, ANAS for XRD, PL, BET and FTIR characterizations.

Funding

There is no found for performing current research.

Author information

Authors and Affiliations

Authors

Contributions

OOB: Conceptualization, Characterization, Discussion, Methodology, Writing—review & editing. AAA: Supervision, Project administration TSI: Carried out some of the experiments SJH: Carried out some of the experiments MBM: Discussion RMA: Discussion EKG: Characterization, Discussion FHR: Characterization, Discussion N.M. Sadigov; Characterization, Discussion MIA; Characterization, Discussion.

Corresponding author

Correspondence to O. O. Balayeva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balayeva, O.O., Azizov, A.A., Muradov, M.B. et al. Noncovalent Doping of Fullerene (C60) into ZnAl–LDH/PVA Matrix and Photocatalytic Degradation of Methylene Blue and Congo Red from Water. J Inorg Organomet Polym (2023). https://doi.org/10.1007/s10904-023-02948-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-023-02948-7

Keywords

Navigation