Skip to main content
Log in

Dehydrated layered double hydroxides: Alcohothermal synthesis and oxygen evolution activity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Layered double hydroxides (LDHs) are a class of two-dimensional (2D) layered materials with extensive applications and well-developed synthesizing methods in aqueous media. In this work, we introduce an alcohothermal synthesis method for fabricating NiFe-LDHs with dehydrated galleries. The proposed process involves incomplete hydrolysis of urea for the simultaneous precipitation of metal ions, with the resulting water-deficient ethanol environment leading to the formation of a dehydrated structure. The formation of a gallery-dehydrated layer structure was confirmed by X-ray diffraction (XRD), as well as by a subsequent rehydration process. The methodology introduced here is also applicable for fabricating Fe-based LDHs (NiFe-LDH and NiCoFe-LDH) nanoarrays, which cannot be produced under the same conditions in aqueous media because of the different precipitation processes involved. The LDH nanoarrays exhibit excellent electrocatalytic performance in the oxygen evolution reaction, as a result of their high intrinsic activity and unique structural features. In summary, this study not only introduces a new method for synthesizing LDH materials, but also provides a new route towards highly active and robust electrodes for electrocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evans, D. G.; Duan, X. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine. Chem. Commun. 2006, 485–496.

    Google Scholar 

  2. Wang, Q.; O'Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155.

    Article  Google Scholar 

  3. Guo, X. X.; Zhang, F. Z.; Evans, D. G.; Duan, X. Layered double hydroxide films: Synthesis, properties and applications. Chem. Commun. 2010, 46, 5197–5210.

    Article  Google Scholar 

  4. Fan, G. L.; Li, F.; Evans, D. G.; Duan, X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040–7066.

    Article  Google Scholar 

  5. Feng, J. T.; He, Y. F.; Liu, Y. R.; Du, Y. Y.; Li, D. Q. Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: General functionality and promising application prospects. Chem. Soc. Rev. 2015, 44, 5291–5319.

    Article  Google Scholar 

  6. Huang, G. B.; Fei, Z. D.; Chen, X. Y.; Qiu, F. L.; Wang, X.; Gao, J. R. Functionalization of layered double hydroxides by intumescent flame retardant: Preparation, characterization, and application in ethylene vinyl acetate copolymer. Appl. Surf. Sci. 2012, 258, 10115–10122.

    Article  Google Scholar 

  7. Choy, J. H.; Choi, S. J.; Oh, J. M.; Park, T. Clay minerals and layered double hydroxides for novel biological applications. Appl. Clay Sci. 2007, 36, 122–132.

    Article  Google Scholar 

  8. Li, L.; Gu, W. Y.; Liu, J.; Yan, S. Y.; Xu, Z. P. Aminefunctionalized SiO2 nanodot-coated layered double hydroxide nanocomposites for enhanced gene delivery. Nano Res. 2015, 8, 682–694.

    Article  Google Scholar 

  9. Carja, G.; Grosu, E. F.; Petrarean, C.; Nichita, N. Selfassemblies of plasmonic gold/layered double hydroxides with highly efficient antiviral effect against the hepatitis B virus. Nano Res. 2015, 8, 3512–3523.

    Article  Google Scholar 

  10. Yan, D. P.; Lu, J.; Wei, M.; Han, J. B.; Ma, J.; Li, F.; Evans, D. G.; Duan, X. Ordered poly(p-phenylene)/layered double hydroxide ultrathin films with blue luminescence by layer-by-layer assembly. Angew. Chem., Int. Ed. 2009, 48, 3073–3076.

    Article  Google Scholar 

  11. Qian, L.; Lu, Z. Y.; Xu, T. H.; Wu, X. C.; Tian, Y.; Li, Y. P.; Huo, Z. Y.; Sun, X. M.; Duan, X. Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis. Adv. Energy Mater. 2015, 5, 1500245.

    Article  Google Scholar 

  12. Wu, J.; Ren, Z. Y.; Du, S. C.; Kong, L. J.; Liu, B. W.; Xi, W.; Zhu, J. Q.; Fu, H. G. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Res. 2016, 9, 713–725.

    Article  Google Scholar 

  13. Wang, Z.; Jia, W.; Jiang, M. L.; Chen, C.; Li, Y. D. Microwave-assisted synthesis of layer-by-layer ultra-large and thin NiAl-LDH/RGO nanocomposites and their excellent performance as electrodes. Sci. China Mater. 2015, 58, 944–952.

    Article  Google Scholar 

  14. Yan, D. P.; Lu, J.; Ma, J.; Qin, S. H.; Wei, M.; Evans, D. G.; Duan, X. Layered host–guest materials with reversible piezochromic luminescence. Angew. Chem., Int. Ed. 2011, 50, 7037–7040.

    Article  Google Scholar 

  15. Yan, D. P.; Lu, J.; Wei, M.; Evans, D. G.; Duan, X. Recent advances in photofunctional guest/layered double hydroxide host composite systems and their applications: Experimental and theoretical perspectives. J. Mater. Chem. 2011, 21, 13128–13139.

    Article  Google Scholar 

  16. Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

    Article  Google Scholar 

  17. Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7584–7588.

    Article  Google Scholar 

  18. Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

    Google Scholar 

  19. Luo, J. S.; Im, J.-H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N.-G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593–1596.

    Article  Google Scholar 

  20. Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

    Article  Google Scholar 

  21. Gong, M.; Wang, D.-Y.; Chen, C.-C.; Hwang, B.-J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46.

    Article  Google Scholar 

  22. He, J.; Wei, M.; Li, B.; Kang, Y.; Evans, D. G.; Duan, X. Preparation of layered double hydroxides. In Layered Double Hydroxides; Duan, X.; Evans, D. G., Eds.; Springer: Berlin Heidelberg, 2006; pp 89–119.

    Chapter  Google Scholar 

  23. Zhao, Y.; Li, F.; Zhang, R.; Evans, D. G.; Duan, X. Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps. Chem. Mater. 2002, 14, 4286–4291.

    Article  Google Scholar 

  24. Morel-Desrosiers, N.; Pisson, J.; Israëli, Y.; Taviot-Guého, C.; Besse, J. P.; Morel, J. P. Intercalation of dicarboxylate anions into a Zn-Al-Cl layered double hydroxide: Microcalorimetric determination of the enthalpies of anion exchange. J. Mater. Chem. 2003, 13, 2582–2585.

    Article  Google Scholar 

  25. Oh, J. M.; Hwang, S. H.; Choy, J. H. The effect of synthetic conditions on tailoring the size of hydrotalcite particles. Solid State Ionics 2002, 151, 285–291.

    Article  Google Scholar 

  26. Prevot, V.; Forano, C.; Khenifi, A.; Ballarin, B.; Scavetta, E.; Mousty, C. A templated electrosynthesis of macroporous NiAl layered double hydroxides thin films. Chem. Commun. 2011, 47, 1761–1763.

    Article  Google Scholar 

  27. Forticaux, A.; Dang, L. N.; Liang, H. F.; Jin, S. Controlled synthesis of layered double hydroxide nanoplates driven by screw dislocations. Nano Lett. 2015, 15, 3403–3409.

    Article  Google Scholar 

  28. Liang, H. F.; Meng, F.; Cabán-Acevedo, M.; Li, L. S.; Forticaux, A.; Xiu, L. C.; Wang, Z. C.; Jin, S. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 2015, 15, 1421–1427.

    Article  Google Scholar 

  29. Liu, Z. P.; Ma, R. Z.; Osada, M.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: Assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J. Am. Chem. Soc. 2006, 128, 4872–4880.

    Article  Google Scholar 

  30. Ma, R. Z.; Liu, Z. P.; Takada, K.; Iyi, N.; Bando, Y.; Sasaki, T. Synthesis and exfoliation of Co2+-Fe3+ layered double hydroxides: An innovative topochemical approach. J. Am. Chem. Soc. 2007, 129, 5257–5263.

    Article  Google Scholar 

  31. Hu, G.; O'Hare, D. Unique layered double hydroxide morphologies using reverse microemulsion synthesis. J. Am. Chem. Soc. 2005, 127, 17808–17813.

    Article  Google Scholar 

  32. Yu, J. F.; Martin, B. R.; Clearfield, A.; Luo, Z. P.; Sun, L. Y. One-step direct synthesis of layered double hydroxide single-layer nanosheets. Nanoscale 2015, 7, 9448–9451.

    Article  Google Scholar 

  33. Chen, H.; Hu, L. F.; Chen, M.; Yan, Y.; Wu, L. M. Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv. Funct. Mater. 2014, 24, 934–942.

    Article  Google Scholar 

  34. Lu, Z. Y.; Xu, W. W.; Zhu, W.; Yang, Q.; Lei, X. D.; Liu, J. F.; Li, Y. P.; Sun, X. M.; Duan, X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 2014, 50, 6479–6482.

    Article  Google Scholar 

  35. Tang, D.; Liu, J.; Wu, X. Y.; Liu, R. H.; Han, X.; Han, Y. Z.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Appl. Mater. Interfaces 2014, 6, 7918–7925.

    Article  Google Scholar 

  36. Pérez-Ramírez, J.; Mul, G.; Kapteijn, F.; Moulijn, J. A. In situ investigation of the thermal decomposition of Co-Al hydrotalcite in different atmospheres. J. Mater. Chem. 2001, 11, 821–830.

    Article  Google Scholar 

  37. Kovanda, F.; Rojka, T.; Bezdička, P.; Jirátová, K.; Obalová, L.; Pacultová, K.; Bastl, Z.; Grygar, T. Effect of hydrothermal treatment on properties of Ni-Al layered double hydroxides and related mixed oxides. J. Solid State Chem. 2009, 182, 27–36.

    Article  Google Scholar 

  38. Kovanda, F.; Rojka, T.; Dobešová, J.; Machovič, V.; Bezdička, P.; Obalová, L.; Jirátová, K.; Grygar, T. Mixed oxides obtained from Co and Mn containing layered double hydroxides: Preparation, characterization, and catalytic properties. J. Solid State Chem. 2006, 179, 812–823.

    Article  Google Scholar 

  39. Lin, Y. J.; Li, D. Q.; Evans, D. G.; Duan, X. Modulating effect of Mg-Al-CO3 layered double hydroxides on the thermal stability of PVC resin. Polym. Degrad. Stabil. 2005, 88, 286–293.

    Article  Google Scholar 

  40. Saber, O.; Hatano, B.; Tagaya, H. Controlling of the morphology of Co–Ti LDH. Mater. Sci. Eng. C 2005, 25, 462–471.

    Article  Google Scholar 

  41. Gennequin, C.; Cousin, R.; Lamonier, J. F.; Siffert, S.; Aboukais, A. Toluene total oxidation over Co supported catalysts synthesised using "memory effect" of Mg-Al hydrotalcite. Catal. Commun. 2008, 9, 1639–1643.

    Article  Google Scholar 

  42. Ferreira, O. P.; Alves, O. L.; Gouveia, D. X.; Souza Filho, A. G.; de Paiva, J. A. C.; Filho, J. M. Thermal decomposition and structural reconstruction effect on Mg-Fe-based hydrotalcite compounds. J. Solid State Chem. 2004, 177, 3058–3069.

    Article  Google Scholar 

  43. Pavel, O. D.; Bîrjega, R.; Che, M.; Costentin, G.; Angelescu, E.; Şerban, S. The activity of Mg/Al reconstructed hydrotalcites by “memory effect” in the cyanoethylation reaction. Catal. Commun. 2008, 9, 1974–1978.

    Article  Google Scholar 

  44. Wang, H. T.; Lu, Z. Y.; Kong, D. S.; Sun, J.; Hymel, T. M.; Cui, Y. Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 2014, 8, 4940–4947.

    Article  Google Scholar 

  45. Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061.

    Article  Google Scholar 

  46. Chen, Z. B.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F. Core–shell MoO3–MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Lett. 2011, 11, 4168–4175.

    Article  Google Scholar 

  47. Li, Y. G.; Hasin, P.; Wu, Y. Y. NixCo3‒x O4 nanowire arrays for electrocatalytic oxygen evolution. Adv. Mater. 2010, 22, 1926–1929.

    Article  Google Scholar 

  48. Wang, J.; Zhong, H.-X.; Qin, Y.-L.; Zhang, X.-B. An efficient three-dimensional oxygen evolution electrode. Angew. Chem., Int. Ed. 2013, 52, 5248–5253.

    Article  Google Scholar 

  49. Lu, Z. Y.; Wu, X. C.; Jiang, M.; Wang, J. N.; Liu, J. F.; Lei, X. D.; Sun, X. M. Transition metal oxides/hydroxides nanoarrays for aqueous electrochemical energy storage systems. Sci. China Mater. 2014, 57, 59–69.

    Article  Google Scholar 

  50. Castro, E. B.; Gervasi, C. A. Electrodeposited Ni-Co-oxide electrodes: Characterization and kinetics of the oxygen evolution reaction. Int. J. Hydrogen Energy 2000, 25, 1163–1170.

    Article  Google Scholar 

  51. Landon, J.; Demeter, E.; Inoğlu, N.; Keturakis, C.; Wachs, I. E.; Vasić, R.; Frenkel, A. I.; Kitchin, J. R. Spectroscopic characterization of mixed Fe-Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal. 2012, 2, 1793–1801.

    Article  Google Scholar 

  52. Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

    Article  Google Scholar 

  53. Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.

    Article  Google Scholar 

  54. Bates, M. K.; Jia, Q. Y.; Doan, H.; Liang, W. T.; Mukerjee, S. Charge-transfer effects in Ni-Fe and Ni-Fe-Co mixed-metal oxides for the alkaline oxygen evolution reaction. ACS Catal. 2016, 6, 155–161.

    Article  Google Scholar 

  55. Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z. P.; Sedach, P. A.; Siu, M. K. J.; Trudel, S.; Berlinguette, C. P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60–63.

    Article  Google Scholar 

  56. Zhao, Y.; Nakamura, R.; Kamiya, K.; Nakanishi, S.; Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 2013, 4, 2390.

    Google Scholar 

  57. Chabi, S.; Peng, C.; Hu, D.; Zhu, Y. Q. Ideal threedimensional electrode structures for electrochemical energy storage. Adv. Mater. 2014, 26, 2440–2445.

    Article  Google Scholar 

  58. Ellis, B. L.; Knauth, P.; Djenizian, T. Three-dimensional self-supported metal oxides for advanced energy storage. Adv. Mater. 2014, 26, 3368–3397.

    Article  Google Scholar 

  59. Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166–5180.

    Article  Google Scholar 

  60. Zhang, H. G.; Yu, X. D.; Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 2011, 6, 277–281.

    Article  Google Scholar 

  61. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

    Article  Google Scholar 

  62. Lu, Z. Y.; Sun, M.; Xu, T. H.; Li, Y. J.; Xu, W. W.; Chang, Z.; Ding, Y.; Sun, X. M.; Jiang, L. Superaerophobic electrodes for direct hydrazine fuel cells. Adv. Mater. 2015, 27, 2361–2366.

    Article  Google Scholar 

  63. Lu, Z. Y.; Zhu, W.; Yu, X. Y.; Zhang, H. C.; Li, Y. J.; Sun, X. M.; Wang, X. W.; Wang, H.; Wang, J. M.; Luo, J. et al. Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes. Adv. Mater. 2014, 26, 2683–2687.

    Article  Google Scholar 

  64. Lu, Z. Y.; Li, Y. J.; Lei, X. D.; Liu, J. F.; Sun, X. M. Nanoarray based “superaerophobic” surfaces for gas evolution reaction electrodes. Mater. Horiz. 2015, 2, 294–298.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Qian, L., Xu, W. et al. Dehydrated layered double hydroxides: Alcohothermal synthesis and oxygen evolution activity. Nano Res. 9, 3152–3161 (2016). https://doi.org/10.1007/s12274-016-1197-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1197-4

Keywords

Navigation