Skip to main content

Advertisement

Log in

Doping and Surface Modification Enhance the Applicability of Nanostructured Fullerene–MWCNT Hybrid Draped LiNi0.1Mg0.1Co0.8O2 as High Efficient Cathode Material for Lithium-Ion Batteries

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Development of high performance cathode materials, layer-structured ternary LiNixCoyM1−x−yO2 cathode materials have attracted much attention owing to their larger capacity and higher energy density. Persistent efforts have been devoted to tackling certain issues like low electronic conductivity and poor structural stability. Dual strategy of Mg doping and surface modification of the cathode material was adopted to improve the performance of the battery. Fullerene–Multi-Walled Carbon Nanotube (MWCNT) hybrid draped LiNi0.1Mg0.1Co0.8O2 nanocomposite was synthesized by a simple chemical route. The fullerene–MWCNT hybrid modifies the surface of pristine LiNi0.1Mg0.1Co0.8O2 thereby improves the electrochemical performance and maintains the structural stability of the cathode material. Pristine LiNi0.1Mg0.1Co0.8O2 and LiNi0.1Mg0.1Co0.8O2/fullerene–MWCNT nanocomposite were studied using various advanced characterization techniques such as X-ray diffraction (XRD), Micro-Raman spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), X-ray Photoelectron Spectroscopy (XPS), and High-Resolution Transmission Electron Microscopy (HRTEM). It is found that LiNi0.1Mg0.1Co0.8O2 particles retain their structural integrity after being enveloped with a fullerene–MWCNT hybrid. The electrochemical performance was investigated with cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) test and electrochemical impedance spectroscopy (EIS). As prepared LiNi0.1Mg0.1Co0.8O2, when deployed in the form of LiNi0.1Mg0.1Co0.8O2/fullerene–MWCNT composite exhibits a high specific capacity of 208 mAh g−1. Fullerene–MWCNT hybrid draped LiNi0.1Mg0.1Co0.8O2 nanocomposite provides an effective Li+ and electron channel that significantly increased the Li-ion diffusion coefficient and reduced the charge transfer resistance. Besides,the lithium diffusion coefficient increased from 5.13 × 10–13 (Li/LiNi0.1Mg0.1Co0.8O2) to 8.313 × 10–13 cm2 s−1 due to the improved kinetics of Li insertion/extraction process in Li/LiNi0.1Mg0.1Co0.8O2 + fullerene–MWCNT cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. X. Meng, Recent progress of graphene as cathode materials in lithium ion batteries. IOP Conf. Ser. Earth Environ. Sci. 300, 042039 (2019). https://doi.org/10.1088/1755-1315/300/4/042039

    Article  Google Scholar 

  2. D. Di Lecce et al., Multiwalled carbon nanotubes anode in lithium-ion battery with LiCoO2, Li[Ni1/3Co1/3 Mn1/3 ]O2, and LiFe1/4Mn1/2 Co1/4 PO4 cathodes. ACS Sustain. Chem. Eng. 6(3), 3225–3232 (2018). https://doi.org/10.1021/acssuschemeng.7b03395

    Article  CAS  Google Scholar 

  3. S.S. Jan, S. Nurgul, X. Shi, H. Xia, H. Pang, Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by graphene nanosheets modification. Electrochim. Acta 149, 86–93 (2014). https://doi.org/10.1016/j.electacta.2014.10.093

    Article  CAS  Google Scholar 

  4. A. Hakimian, S. Kamarthi, S. Erbis, K.M. Abraham, T.P. Cullinane, J.A. Isaacs, Economic analysis of CNT lithium-ion battery manufacturing. Environ. Sci. Nano 2(5), 463–476 (2015). https://doi.org/10.1039/C5EN00078E

    Article  CAS  Google Scholar 

  5. X. Li et al., Improved rate capability of a LiNi1/3Co1/3Mn1/3O 2 /CNT/graphene hybrid material for Li-ion batteries. RSC Adv. 7(39), 24359–24367 (2017). https://doi.org/10.1039/C7RA03438E

    Article  Google Scholar 

  6. W. Koh, J.I. Choi, S.G. Lee, W.R. Lee, S.S. Jang, First-principles study of Li adsorption in a carbon nanotube-fullerene hybrid system. Carbon N. Y. 49(1), 286–293 (2011). https://doi.org/10.1016/j.carbon.2010.09.022

    Article  CAS  Google Scholar 

  7. K.-C. Jiang, S. Xin, J.-S. Lee, J. Kim, X.-L. Xiao, Y.-G. Guo, Improved kinetics of LiNi1/3Mn1/3Co1/3O2 cathode material through reduced graphene oxide networks. Phys. Chem. Chem. Phys. 14(8), 2934 (2012). https://doi.org/10.1039/c2cp23363k

    Article  CAS  PubMed  Google Scholar 

  8. R. Pongilat, K. Nallathamby, A novel Li2Mn2.9Ni 0.9Co0.2O8 spinel composite interweaved with carbon nanotube architecture as a lithium battery cathode. RSC Adv. 6(54), 49198–49205 (2016). https://doi.org/10.1039/C6RA04344E

    Article  CAS  Google Scholar 

  9. T. Fujigaya, Development of thermoelectric conversion materials using carbon nanotube sheets. Bull. Chem. Soc. Jpn. 92(2), 400–408 (2019). https://doi.org/10.1246/bcsj.20180272

    Article  CAS  Google Scholar 

  10. D.G. Papageorgiou, Z. Li, M. Liu, I.A. Kinloch, R.J. Young, Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale 12(4), 2228–2267 (2020). https://doi.org/10.1039/C9NR06952F

    Article  CAS  PubMed  Google Scholar 

  11. M.M. Mohideen, Y. Liu, S. Ramakrishna, Recent progress of carbon dots and carbon nanotubes applied in oxygen reduction reaction of fuel cell for transportation. Appl. Energy 257, 114027 (2020). https://doi.org/10.1016/j.apenergy.2019.114027

    Article  CAS  Google Scholar 

  12. S. Samad et al., Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. Int. J. Hydrog. Energy 43(16), 7823–7854 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.154

    Article  CAS  Google Scholar 

  13. S. Sharma, B.G. Pollet, Support materials for PEMFC and DMFC electrocatalysts—a review. J. Power Sources 208, 96–119 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.011

    Article  CAS  Google Scholar 

  14. H. Zhang et al., Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. J. Mater. Chem. A 6(42), 20564–20620 (2018). https://doi.org/10.1039/C8TA05336G

    Article  CAS  Google Scholar 

  15. Y. Ma, P. Cui, D. Zhan, B. Gan, Y. Ma, Y. Liang, Enhancement of the electrochemical performance of LiNi1/3Co1/3 Mn1/3O2 cathode material by double-layer coating with graphene oxide and SnO2 for lithium-ion batteries. J. Nanomater. 2019, 1–10 (2019). https://doi.org/10.1155/2019/7586790

    Article  CAS  Google Scholar 

  16. H. Zhang, Synthesis and characterization of LiNi0.7-xMgxCo0.3O2 (0≤x ≤ 0.1) cathode materials for lithium- ion batteries prepared by a sol gel method. Adv. Mater. Sci. Eng. 2014, 1–7 (2014). https://doi.org/10.1155/2014/746341

    Article  CAS  Google Scholar 

  17. J. Xiang, C. Chang, F. Zhang, J. Sun, Rheological phase synthesis and electrochemical properties of Mg-doped LiNi0.8Co0.2O2 cathode materials for lithium-ion battery. J. Electrochem. Soc. 155(7), A520 (2008). https://doi.org/10.1149/1.2917213

    Article  CAS  Google Scholar 

  18. J. Cho, B. Park, Preparation and electrochemical/thermal properties of LiNi0.74Co0.26O2 cathode material. J. Power Sources 92(1–2), 35–39 (2001). https://doi.org/10.1016/S0378-7753(00)00499-7

    Article  CAS  Google Scholar 

  19. R. Robert, C. Villevieille, P. Novák, Enhancement of the high potential specific charge in layered electrode materials for lithium-ion batteries. J. Mater. Chem. A 2(23), 8589 (2014). https://doi.org/10.1039/c3ta12643a

    Article  CAS  Google Scholar 

  20. K. Yin, W. Fang, B. Zhong, X. Guo, Y. Tang, X. Nie, The effects of precipitant agent on structure and performance of LiNi1/3Co1/3Mn1/3O2 cathode material via a carbonate co-precipitation method. Electrochim. Acta 85, 99–103 (2012). https://doi.org/10.1016/j.electacta.2012.06.064

    Article  CAS  Google Scholar 

  21. J. Wang, R. Ran, M.O. Tade, Z. Shao, Self-assembled mesoporous TiO2/carbon nanotube composite with a three-dimensional conducting nanonetwork as a high-rate anode material for lithium-ion battery. J. Power Sources 254, 18–28 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.090

    Article  CAS  Google Scholar 

  22. Y. Gong, M. Zhou, L. Andrews, Spectroscopic and theoretical studies of transition metal oxides and dioxygen complexes. Chem. Rev. 109(12), 6765–6808 (2009). https://doi.org/10.1021/cr900185x

    Article  CAS  PubMed  Google Scholar 

  23. C. Julien, Electrochemical performances of layered LiM1−yMy′O2 (M=Ni, Co; M′=Mg, Al, B) oxides in lithium batteries. Solid State Ion. 135(1–4), 121–130 (2000). https://doi.org/10.1016/S0167-2738(00)00290-3

    Article  CAS  Google Scholar 

  24. P. Kalyani, N. Kalaiselvi, Various aspects of LiNiO2 chemistry: a review. Sci. Technol. Adv. Mater. 6(6), 689–703 (2005). https://doi.org/10.1016/j.stam.2005.06.001

    Article  CAS  Google Scholar 

  25. N.H. Metwally, G.R. Saad, E.A. Abd El-Wahab, Grafting of multiwalled carbon nanotubes with pyrazole derivatives: characterization, antimicrobial activity and molecular docking study. Int. J. Nanomed. 14, 6645–6659 (2019). https://doi.org/10.2147/IJN.S182699

    Article  CAS  Google Scholar 

  26. Z. Fang et al., Facile scalable synthesis of Co3O4/carbon nanotube hybrids as superior anode materials for lithium-ion batteries. Mater. Res. Bull. 48(10), 4419–4423 (2013). https://doi.org/10.1016/j.materresbull.2013.06.044

    Article  CAS  Google Scholar 

  27. T. Drezen, N.-H. Kwon, P. Bowen, I. Teerlinck, M. Isono, I. Exnar, Effect of particle size on LiMnPO4 cathodes. J. Power Sources 174(2), 949–953 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.203

    Article  CAS  Google Scholar 

  28. M. Inaba, Y. Iriyama, Z. Ogumi, Y. Todzuka, A. Tasaka, Raman study of layered rock-salt LiCoO2 and its electrochemical lithium deintercalation. J. Raman Spectrosc. 28(8), 613–617 (1997). https://doi.org/10.1002/(SICI)1097-4555(199708)28:8%3c613::AID-JRS138%3e3.0.CO;2-T

    Article  CAS  Google Scholar 

  29. A. Hasanzadeh, A. Khataee, M. Zarei, Y. Zhang, Two-electron oxygen reduction on fullerene C60-carbon nanotubes covalent hybrid as a metal-free electrocatalyst. Sci. Rep. 9(1), 13780 (2019). https://doi.org/10.1038/s41598-019-50155-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362(1824), 2477–2512 (2004). https://doi.org/10.1098/rsta.2004.1452

    Article  CAS  Google Scholar 

  31. X. Tang et al., Graphene wrapped ordered LiNi0.5Mn1.5O4 nanorods as promising cathode material for lithium-ion batteries. Sci. Rep. 5(1), 11958 (2015). https://doi.org/10.1038/srep11958

    Article  PubMed  PubMed Central  Google Scholar 

  32. X. Tian, Y. Zhu, Z. Tang, P. Xie, A. Natarajan, Y. Zhou, Ni-rich LiNi0.6Co0.2Mn0.2O2 nanoparticles enwrapped by a 3D graphene aerogel network as a high-performance cathode material for Li-ion batteries. Ceram. Int. 45(17), 22233–22240 (2019). https://doi.org/10.1016/j.ceramint.2019.07.247

    Article  CAS  Google Scholar 

  33. H.-M. Cho, M.V. Chen, A.C. MacRae, Y.S. Meng, Effect of surface modification on nano-structured LiNi0.5Mn1.5O 4 spinel materials. ACS Appl. Mater. Interfaces 7(30), 16231–16239 (2015). https://doi.org/10.1021/acsami.5b01392

    Article  CAS  PubMed  Google Scholar 

  34. A. Kumar et al., Mg doped Li2FeSiO4 /C nanocomposites synthesized by the solvothermal method for lithium ion batteries. Dalton Trans. 46(38), 12908–12915 (2017). https://doi.org/10.1039/C7DT03177G

    Article  CAS  PubMed  Google Scholar 

  35. L. Qu et al., Mg-doped Li2FeSiO4/C as high-performance cathode material for lithium-ion battery. J. Power Sources 307, 69–76 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.137

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Nimma Elizabeth.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this research paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paniyarasi, S.A.S., Suja, S.K. & Elizabeth, R.N. Doping and Surface Modification Enhance the Applicability of Nanostructured Fullerene–MWCNT Hybrid Draped LiNi0.1Mg0.1Co0.8O2 as High Efficient Cathode Material for Lithium-Ion Batteries. J Inorg Organomet Polym 31, 3976–3990 (2021). https://doi.org/10.1007/s10904-021-02039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02039-5

Keywords

Navigation