Skip to main content
Log in

Synthesis, Characterization, Crystal Structure, and Hirshfeld Surface Analysis of Zinc, Cadmium, and Mercury Diphosphine Complexes; Precursors for Oxide Nanoparticles

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this article, complexes of Zinc(II), Cadmium(II), and Mercury(II) with Xantphos were synthesized and the molecular structure of two new complexes of [Cd(Xantphos)I2] and [Hg(Xantphos)I2] was determined by single-crystal X-ray crystallography. The hirshfeld surface analyses showed different types of intermolecular interactions in these diphosphines complexes. Moreover, the thermal decomposition of complexes was investigated using the thermogravimetric analysis, which approved the calcination of complexes had led to the formation of corresponding metal oxide nanoparticles. The crystallinity and morphology of final metal oxide nanoparticles characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and IR spectroscopy.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Scozzafava, C.T. Supuran, J. Med. Chem. (2000). https://doi.org/10.1021/jm000027t

    Article  PubMed  Google Scholar 

  2. S.Y. Hao, S.X. Hou, K. Van Hecke, G.H. Cui, Dalt. Trans. (2017). https://doi.org/10.1039/c6dt04516b

    Article  Google Scholar 

  3. A. Scozzafava, L. Menabuoni, F. Mincione, G. Mincione, C.T. Supuran, Bioorg. Med Chem. Lett. (2001). https://doi.org/10.1016/S0960-894X(00)00722-8

    Article  PubMed  Google Scholar 

  4. M. Montazerozohori, S.M. Jahromi, A. Naghiha, J. Ind. Eng. Chem. (2015). https://doi.org/10.1016/j.jiec.2014.07.017

    Article  Google Scholar 

  5. S.M. Jahromi, M. Montazerozohori, A. Masoudiasl, E. Houshyar, S. Joohari, J.M. White, Ultrason. Sonochem. (2018). https://doi.org/10.1016/j.ultsonch.2017.10.025

    Article  PubMed  Google Scholar 

  6. S. Pascual, P. de Mendoza, A.A.C. Braga, F. Maseras, A.M. Echavarren, Tetrahedron (2008). https://doi.org/10.1016/j.tet.2008.01.056

    Article  Google Scholar 

  7. P.W.N.M. Van Leeuwen, P.C.J. Kamer, J.N.H. Reek, P. Dierkes, Chem. Rev. (2000). https://doi.org/10.1021/cr9902704

    Article  PubMed  Google Scholar 

  8. M.N. Birkholz, Z. Freixa, P. Van Leeuwen, Chem. Soc. Rev. (2009). https://doi.org/10.1039/b806211k

    Article  PubMed  Google Scholar 

  9. C.P. Casey, G.T. Whiteker, Isr. J. Chem. (1990). https://doi.org/10.1002/ijch.199000031

    Article  Google Scholar 

  10. M. Viciano-Chumillas, J.M. Carbonell-Vilar, D. Armentano, J. Cano, Eur. J. Inorg. Chem. (2019). https://doi.org/10.1002/ejic.201900323

    Article  Google Scholar 

  11. P.W.N.M. Van Leeuwen, P.C.J. Kamer, Catal. Sci. Technol. (2018). https://doi.org/10.1039/c7cy01629h

    Article  Google Scholar 

  12. X. Yu, T.J. Marks, A. Facchetti, Nat. Mater. (2016). https://doi.org/10.1038/nmat4599

    Article  PubMed  PubMed Central  Google Scholar 

  13. H. Emadi, A. Nemati Kharat, Mater. Res. Bull. (2013). https://doi.org/10.1016/j.materresbull.2013.06.008

    Article  Google Scholar 

  14. A. Morsali, J. Inorg. Organomet. Polym. Mater. (2012). https://doi.org/10.1007/s10904-012-9691-y

    Article  Google Scholar 

  15. T.W. Sun, Y.J. Zhu, C. Qi, G.J. Ding, F. Chen, J. Wu, J. Colloid Interface Sci. (2016). https://doi.org/10.1016/j.jcis.2015.10.038

    Article  PubMed  Google Scholar 

  16. S. Gopinath, J. Philip, Mater. Chem. Phys. (2014). https://doi.org/10.1016/j.matchemphys.2014.02.005

    Article  Google Scholar 

  17. A. Barhoum, G. Van Assche, H. Rahier, M. Fleisch, S. Bals, M.P. Delplancked, F. Leroux, D. Bahnemann, Mater. Des. (2017). https://doi.org/10.1016/j.matdes.2017.01.059

    Article  Google Scholar 

  18. M. Goudarzi, M. Bazarganipour, M. Salavati-Niasari, RSC Adv. (2014). https://doi.org/10.1039/c4ra09653c

    Article  Google Scholar 

  19. B.Z. Momeni, F. Rahimi, F. Rominger, J. Inorg. Organomet. Polym. Mater. (2018). https://doi.org/10.1007/s10904-017-0706-6

    Article  Google Scholar 

  20. S. Ghosh, P. Kar, N. Bhandary, S. Basu, S. Sardar, T. Maiyalagan, D. Majumdar, S.K. Bhattacharya, A. Bhaumik, P. Lemmens, S.K. Pal, Catal. Sci. Technol. (2016). https://doi.org/10.1039/c5cy01264c

    Article  Google Scholar 

  21. Y. Wang, G. Chen, L. Han, J. Pei, J. Solid State Chem. (2013). https://doi.org/10.1016/j.jssc.2013.08.023

    Article  Google Scholar 

  22. J. Zhao, M. Li, J. Sun, L. Liu, P. Su, Q. Yang, C. Li, Chem. A (2012). https://doi.org/10.1002/chem.201103415

    Article  Google Scholar 

  23. K.E. Dekrafft, C. Wang, W. Lin, Adv. Mater. (2012). https://doi.org/10.1002/adma.201200330

    Article  PubMed  Google Scholar 

  24. M. Alikhani, M. Hakimi, K. Moeini, V. Eigner, M. Dusek, Synthesis. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01442-8

    Article  Google Scholar 

  25. L.M. Su, N. Grote, F. Schmittr, Electron. Lett. (1984). https://doi.org/10.1049/el:19840490

    Article  Google Scholar 

  26. F.A. Benko, F.P. Koffyberg, Solid State Commun. (1986). https://doi.org/10.1016/0038-1098(86)90920-8

    Article  Google Scholar 

  27. S. Basak, S. Sen, S. Banerjee, S. Mitra, G. Rosair, M.T.G. Rodriguez, Polyhedron (2007). https://doi.org/10.1016/j.poly.2007.07.025

    Article  Google Scholar 

  28. F. Marandi, L. Hashemi, A. Morsali, H. Krautscheid, J. Inorg. Organomet. Polym. Mater. (2016). https://doi.org/10.1007/s10904-016-0403-x

    Article  Google Scholar 

  29. A.D. Khalaji, G. Grivani, M. Seyyedi, K. Fejfarova, Polyhedron (2013). https://doi.org/10.1016/j.poly.2012.09.054

    Article  Google Scholar 

  30. A.L. Abdelhady, M.A. Malik, P. O’Brien, J. Inorg. Organomet. Polym. Mater. (2014). https://doi.org/10.1007/s10904-013-9902-1

    Article  Google Scholar 

  31. F.A. Afkhami, A.A. Khandar, G. Mahmoudi, R. Abdollahi, A.V. Gurbanov, A.M. Kirillov, Crystals (2019). https://doi.org/10.3390/cryst9040199

    Article  Google Scholar 

  32. B. Mirtamizdoust, Y. Hanifehpour, E. Behzadfar, M. Sadeghi-Roodsari, J.H. Jung, S.W. Joo, J. Mol. Struct. (2020). https://doi.org/10.1016/j.molstruc.2019.127191

    Article  Google Scholar 

  33. S.G. Ghomshehzadeh, V. Nobakht, N. Pourreza, P. Mercandelli, L. Carlucci, Polyhedron (2020). https://doi.org/10.1016/j.poly.2019.114265

    Article  Google Scholar 

  34. M. Tavassoli, M. Montazerozohori, A. Masoudiasl, Z. Akbari, T. Doert, E.M. Vazquez Lopez, S.J. Fatemi, Polyhedron (2020). https://doi.org/10.1016/j.poly.2019.114287

    Article  Google Scholar 

  35. F. Sefidabi, A. Abbasi, S.S. Mortazavi, M. Masteri-Farahani, Appl. Organomet. Chem. (2020). https://doi.org/10.1002/aoc.5890

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nemati Kharat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliahmadi, M., Nemati Kharat, A. Synthesis, Characterization, Crystal Structure, and Hirshfeld Surface Analysis of Zinc, Cadmium, and Mercury Diphosphine Complexes; Precursors for Oxide Nanoparticles. J Inorg Organomet Polym 31, 2594–2605 (2021). https://doi.org/10.1007/s10904-021-01948-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01948-9

Keywords

Navigation