Skip to main content
Log in

Preparation of Co3O4 Nanoparticles via Thermal Decomposition of Three New Supramolecular Structures of Co(II) and (III) Containing 4′-Hydroxy-2,2′:6′,2′′-Terpyridine: Crystal Structures and Thermal Analysis Studies

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Three cobalt(II) and (III) complexes based on the 4′-hydroxy-2,2′:6′,2"-terpyridine (tpyOH) have been synthesized and structurally characterized by X-ray crystallography. The reaction of tpyOH with CoCl2·6H2O in a mixture of methanol/CH2Cl2 resulted in the formation of the new complex [CoIICl2(tpyOH)] (1). On the other hand, the reaction of CoCl2·6H2O with tpyOH in a 2:1 or 1:1 mol ratio in methanol under reflux condition affords the new complexes [CoIII(tpyOH)(tpyO)][CoIICl4]·H2O (2) and [CoIIICl2(H2O)(tpyO)]·H2O (3), respectively. Moreover, the treatment of a methanolic solution of CoCl2·6H2O with tpyOH in a branched tube at 60 °C resulted in the formation of three quality crystals of the complexes 1 and 2 as the major products as well as the complex 3 as a minor product. The crystal structure of [CoCl2(tpyOH)] (1) reveals that the cobalt(II) is penta-coordinated by two Cl and three nitrogen atoms of tpyOH in a distorted square pyramidal geometry. The complex [CoIII(tpyOH)(tpyO)][CoIICl4]·H2O (2) is described as a highly distorted octahedral geometry [CoN6] while the X-ray crystal structure of the complex [CoIIICl2(H2O)(tpyO)]·H2O (3) shows that cobalt(III) is hexa-coordinated in a slightly distorted octahedral geometry CoCl2N3O. Several strong noncovalent interactions are present in the crystal structure of 13. The hydrogen bonding in 1 involves the OH⋯Cl bridges while there is a hydrogen bonding between tpyO and tpyOH of the next molecule in 2 and hydrogen bridges and π–π interactions for 3, connecting molecules and ions in the crystalline 13 to form supramolecular networks. The thermal stabilities of the cobalt complexes reveal that the loss of free terpyridine ligand could not be observed in low temperatures. The hexagonal and spherical Co3O4 nanoparticles (NPCs) were prepared by direct calcination of complexes 13 at 600 °C in air. The nanostructures of the products were characterized by IR, powder X-ray diffraction, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy which show the purity of the resulting Co3O4 NPCs. The average particle size using Scherrer’s equation is calculated to be about 32–35 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. G.T. Morgan, F.H. Burstall, J. Chem. Soc. 20, 20 (1932)

    Article  Google Scholar 

  2. R.A. Fallahpour, Synthesis 2003, 155 (2003)

    Article  Google Scholar 

  3. J. Wang, G.S. Hanan, Synlett. 8:1251 (2005)

    Google Scholar 

  4. M.N. Patel, H.N. Joshi, C.R. Patel, J. Organomet. Chem. 701, 8 (2012)

    Article  CAS  Google Scholar 

  5. F. Kröhnke, Synthesis 1976:15 (1976)

    Article  Google Scholar 

  6. R.-A. Fallahpour, E.C. Constable, J. Chem. Soc. Perkin Trans. 1, 2263 (1997)

    Article  Google Scholar 

  7. G. Zhang, J. Tan, Y.Z. Zhang, C. Ta, S. Sanchez, S.-Y. Cheng, J.A. Golen, A.L. Rheingold, Inorg. Chim. Acta 435, 147 (2015)

    Article  CAS  Google Scholar 

  8. E.C. Constable, C.E. Housecroft, V. Jullien, M. Neuburger, S. Schaffner, Inorg. Chem. Commun. 9, 504 (2006)

    Article  CAS  Google Scholar 

  9. Z. Naseri, A. Nemati Kharat, A. Banavand, A. Bakhoda, S. Foroutannejad, Polyhedron 33, 396 (2012)

    Article  CAS  Google Scholar 

  10. A.N. Kharat, A. Bakhoda, B.T. Jahromi, Polyhedron 30, 2768 (2011)

    Article  CAS  Google Scholar 

  11. R. Indumathy, M. Kanthimathi, T. Weyhermuller, B.U. Nair, Polyhedron 27, 3443 (2008)

    Article  CAS  Google Scholar 

  12. M. Chiper, M.A.R. Meier, J.M. Kranenburg, U.S. Schubert, Macromol. Chem. Phys. 208, 679 (2007)

    Article  CAS  Google Scholar 

  13. J.E. Beves, E.C. Constable, C.E. Housecroft, C.J. Kepert, D.J. Price, CrystEngComm 9, 456 (2007)

    Article  CAS  Google Scholar 

  14. J.E. Beves, E.C. Constable, C.E. Housecroft, M. Neuburger, S. Schaffner, CrystEngComm 10, 344 (2008)

    Article  CAS  Google Scholar 

  15. J.E. Beves, D.J. Bray, J.K. Clegg, E.C. Constable, C.E. Housecroft, K.A. Jolliffe, C.J. Kepert, L.F. Lindoy, M. Neuburger, D.J. Price, S. Schaffner, F. Schaper, Inorg. Chim. Acta 361, 2582 (2008)

    Article  CAS  Google Scholar 

  16. U.S. Schubert, C. Eschbaumer, O. Hien, P.R. Andres, Terahedron Lett. 42, 4705 (2001)

    Article  CAS  Google Scholar 

  17. E.C. Constable, E.L. Dunphy, C.E. Housecroft, M. Neuburger, S. Schaffner, F. Schaper, S.R. Batten, Dalton Trans. 38, 4323 (2007)

    Article  Google Scholar 

  18. F. Yuan, S.-S. Shen, H.-M. Hu, R. An, X. Wang, Z. Chang, G. Xue, Inorg. Chim. Acta 430, 17 (2015)

    Article  CAS  Google Scholar 

  19. A.S. Abd-El-Aziz, J.L. Pilfold, B.Z. Momeni, A.J. Proud, J.K. Pearson, Polym. Chem. 5, 3453 (2014)

    Article  CAS  Google Scholar 

  20. B.Z. Momeni, S. Heydari, Polyhedron 97, 94 (2015)

    Article  CAS  Google Scholar 

  21. J. McMurtrie, I. Dance, CrystEngComm 7, 230 (2005)

    Article  CAS  Google Scholar 

  22. J. McMurtrie, I. Dance, CrystEngComm 12, 2700 (2010)

    Article  CAS  Google Scholar 

  23. Y. Wang, G. Chen, L. Han, J. Pei, J. Solid State Chem 206, 251 (2013)

    Article  CAS  Google Scholar 

  24. V. Fernández-Moreira, F.L. Thorp-Greenwood, R.J. Arthur, B.M. Kariuki, R.L. Jenkins, M.P. Coogan, Dalton Trans 39, 7493 (2010)

    Article  Google Scholar 

  25. K.A. Maghacut, A.B. Wood, W.J. Boyko, T.J. Dudley, J.J. Paul, Polyhedron 67, 329 (2014)

    Article  CAS  Google Scholar 

  26. J.R. Jeitler, M.M. Turnbull, Acta Cryst E61, m1846 (2005)

    Google Scholar 

  27. A. Galet, A.B. Gaspar, M.C. Muňoz, J.A. Real, Inorg. Chem. 45, 4413 (2006)

    Article  CAS  Google Scholar 

  28. P. Nielsen, H. Toftlund, A.D. Bond, J.F. Boas, J.R. Pilbrow, G.R. Hanson, C. Noble, M.J. Riley, S.M. Neville, B. Moubaraki, K.S. Murray, Inorg. Chem. 48, 7033 (2009)

    Article  CAS  Google Scholar 

  29. A.B. Gaspar, M.C. Muňoz, V. Niel, J.A. Real, Inorg. Chem. 40, 9 (2001)

    Article  CAS  Google Scholar 

  30. S. Hayami, Y. Komatsu, T. Shimizu, H. Kamihata, Y.H. Lee, Coord. Chem. Rev. 255, 1981 (2011)

    Article  CAS  Google Scholar 

  31. T. Wieprecht, J. Xia, U. Heinz, J. Dannacher, G. Schlingloff, J. Mol. Catal. A 203, 113 (2003)

    Article  CAS  Google Scholar 

  32. V. Raman, S. Suresh, P.A. Savarimuthu, T. Raman, A.M. Tsatsakis, K.S. Golokhvast, V.K. Vadivel, Exp Ther. Med. 11, 553 (2016)

    Article  CAS  Google Scholar 

  33. S. Gopinath, K. Sivakumar, B. Karthikeyen, C. Ragupathi, R. Sundaram, Phys. E 81, 66 (2016)

    Article  CAS  Google Scholar 

  34. B. Varghese, T.C. Hoong, Z. Yanwu, M.V. Reddy, B.V.R. Chowdari, A.T.S. Wee, T.B.C. Vincent, C.T. Lim, C.-H. Sow, Adv. Funct. Mater. 17, 1932 (2007)

    Article  CAS  Google Scholar 

  35. D.D.M. Prabaharan, K. Sadaiyandi, M. Mahendran, S. Sagadevan, Appl. Phys. A 123, 264 (2017)

    Article  Google Scholar 

  36. V.R. Shinde, S.B. Mahadik, T.P. Gujar, C.D. Lokhande, Appl. Surf. Sci. 252, 7487 (2006)

    Article  CAS  Google Scholar 

  37. M. Pudukudy, Z. Yaakob, Chem. Pap. 68, 1087 (2014)

    Article  CAS  Google Scholar 

  38. L. Sun, H. Li, L. Ren, C. Hu, Solid State Sci. 11, 108 (2009)

    Article  CAS  Google Scholar 

  39. H. Wang, L. Zhang, X. Tan, C.M.B. Holt, B. Zahiri, B.C. Olsen, D. Mitlin, J. Phys. Chem. C 115, 17599 (2011)

    Article  CAS  Google Scholar 

  40. H. Sadeghzadeh, A. Morsali, V.T. Yilmaz, O. Büyükgüngör, Mater. Lett. 64, 810 (2010)

    Article  CAS  Google Scholar 

  41. A. Dehno Khalaji, M. Nikookar, K. Fejfarova, M. Dusek, J. Mol. Struct. 107, 6 (2014)

    Article  Google Scholar 

  42. M. Salavati-Niasari, A. Khansari, C. R. Chim 17, 352 (2014)

    Article  CAS  Google Scholar 

  43. A. Mehrani, A. Morsali, J. Mol. Struct. 1074, 596 (2014)

    Article  CAS  Google Scholar 

  44. L. Dolatyari, P. Seddigi, A. Ramazani, M.G. Amiri, J. Struct. Chem. 54, 571 (2013)

    Article  CAS  Google Scholar 

  45. E.C. Constable, M.D. Ward, J. Chem. Soc. Dalton Trans.4:1405 (1990)

    Article  Google Scholar 

  46. G.M. Sheldrick, Bruker Analytical X-Ray-Division, Bruker Corp., Madison (2012)

    Google Scholar 

  47. G.M. Sheldrick, SHELXL-2014 Program, (Sheldrick, 2014) for structure refinement. Acta Cryst. C 71, 3 (2015)

    Article  Google Scholar 

  48. R. Jenkins, R.L. Snyder, Introduction to X-ray powder diffractometry Chemical Analysis: vol. 138 (Wiley, New York, 1996),

    Book  Google Scholar 

  49. S.-H. Hwang, C.N. Moorefield, P. Wang, J.-Y. Kim, S.-W. Lee, G.R. Newkome, Inorg. Chim. Acta 360, 1780 (2007)

    Article  CAS  Google Scholar 

  50. J. Kuwabara, T. Namekawa, M. Haga, T. Kanbara, Dalton Trans. 42, 44 (2012)

    Article  Google Scholar 

  51. S. Aroua, T.K. Todorova, P. Hommes, L.-M. Chamoreau, H.-U. Reissig, V. Mougel, M. Fontecave, Inorg. Chem. 56, 373 (2017)

    Article  Google Scholar 

  52. H. Hofmeier, U. Schubert, Chem. Soc. Rev. 33, 373 (2004)

    Article  CAS  Google Scholar 

  53. B. Xu, B. Liu, H.-M. Hu, Y. Cheng, Z. Chang, G. Xue, Polyhedron 96, 88 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Iran National Science Foundation (INSF) for financial support (Grant No. 93051215). We also thank the Science Research Council of K.N. Toosi University of Technology for financial support. We greatly appreciate Professor Jan Janczak for his helpful advice on X-ray crystallography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badri Z. Momeni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni, B.Z., Rahimi, F. & Rominger, F. Preparation of Co3O4 Nanoparticles via Thermal Decomposition of Three New Supramolecular Structures of Co(II) and (III) Containing 4′-Hydroxy-2,2′:6′,2′′-Terpyridine: Crystal Structures and Thermal Analysis Studies. J Inorg Organomet Polym 28, 235–250 (2018). https://doi.org/10.1007/s10904-017-0706-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0706-6

Keywords

Navigation