Skip to main content

Advertisement

Log in

Mangrove Helps: Sonneratia alba-Synthesized Silver Nanoparticles Magnify Guppy Fish Predation Against Aedes aegypti Young Instars and Down-Regulate the Expression of Envelope (E) Gene in Dengue Virus (Serotype DEN-2)

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The control of dengue vectors with effective tools is crucial. Here, we fabricated silver nanoparticles (AgNP) using a cheap method relying to a mangrove extract (Sonneratia alba) as a reducing and stabilizing agent. AgNP were characterized by UV–vis spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction. LC50 of S. alba extract against Aedes aegypti ranged from 192.03 ppm (larva I) to 353.36 ppm (pupa). LC50 of AgNP ranged from 3.15 (I) to 13.61 ppm (pupa). Sub-lethal doses of AgNP magnified predation rates of guppy fishes, Poecilia reticulata, against Ae. aegypti and Chironomus kiiensis larvae. Mangrove-fabricated AgNP were evaluated for their antimicrobial potential against Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi, using the agar disc diffusion and minimum inhibitory concentration protocol. Notably, S. alba-synthesized AgNP tested at doses ranging from 5 to 15 µg/mL down-regulated the expression of the envelope (E) gene and protein in dengue virus (serotype DEN-2), while only little cytotoxicity rates (i.e. <15%) were detected on Vero cells when AgNP were tested at 10 µg/mL. Overall, this study pointed out the potential of S. alba-synthesized AgNP to develop eco-friendly nanoformulations effective against dengue virus and its mosquito vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Jensen and H. Mehlhorn (2009). Seventy-five years of Resochin® in the fight against malaria. Parasitol. Res. 105, 609–627.

    Article  Google Scholar 

  2. H. Mehlhorn, K. A. S. Al-Rasheid, S. Al-Quraishy, and F. Abdel-Ghaffar (2012). Research and increase of expertise in arachno-entomology are urgently needed. Parasitol. Res. 110, 259–265.

    Article  Google Scholar 

  3. G. Benelli and H. Mehlhorn (2016). Declining malaria, rising dengue and Zika virus: insights for mosquito vector control. Parasitol. Res. 115, 1747–1754.

    Article  Google Scholar 

  4. G. Benelli, A. Lo Iacono, A. Canale, and H. Mehlhorn (2016). Mosquito vectors and the spread of cancer: an overlooked connection? Parasitol. Res. 115, 2131–2137.

    Article  Google Scholar 

  5. WHO (2016). Malaria fact sheet, Updated January 2016.

  6. WHO (2012). Dengue and severe dengue. Fact sheet n. 117, Updated March 2016.

  7. WHO (2015). Dengue and severe dengue. Fact sheet No. 117, Updated May 2015.

  8. O. J. Brady, P. W. Gething, S. Bhatt, J. P. Messina, J. S. Brownstein, and A. G. Hoen (2012). Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 6, e1760.

    Article  Google Scholar 

  9. S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow, and C. L. Moyes (2013). The global distribution and burden of dengue. Nature 496, 504–507.

    Article  CAS  Google Scholar 

  10. G. Benelli (2015). Research in mosquito control: current challenges for a brighter future. Parasitol. Res. 114, 2801–2805.

    Article  Google Scholar 

  11. J. Hemingway and H. Ranson (2000). Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 45, 371–391.

    Article  CAS  Google Scholar 

  12. M. N. Naqqash, A. Gökçe, A. Bakhsh, and M. Salim (2016). Insecticide resistance and its molecular basis in urban insect pests. Parasitol. Res. 115, 1363–1373.

    Article  Google Scholar 

  13. G. Benelli (2015). Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol. Res. 114, 3201–3212.

    Article  Google Scholar 

  14. A. Azizullah, Z. U. Rehman, I. Ali, W. Murad, N. Muhammad, W. Ullah, and D. P. Hader (2014). Chlorophyll derivatives can be an efficient weapon in the fight against dengue. Parasitol. Res. 113, 4321–4326.

    Article  Google Scholar 

  15. G. Benelli, S. Bedini, F. Cosci, C. Toniolo, B. Conti, and M. Nicoletti (2015). Larvicidal and ovi-deterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitol. Res. 114, 227–236.

    Article  Google Scholar 

  16. G. Benelli, S. Bedini, G. Flamini, F. Cosci, P. L. Cioni, S. Amira, F. Benchikh, H. Laouer, G. Di Giuseppe, and B. Conti (2015). Mediterranean essential oils as effective weapons against the West Nile vector Culex pipiens and the Echinostoma intermediate host Physella acuta: what happens around? An acute toxicity survey on non-target mayflies. Parasitol. Res. doi:10.1007/s00436-014-4267-0.

    Google Scholar 

  17. G. Benelli, K. Murugan, C. Panneerselvam, P. Madhiyazhagan, B. Conti, and M. Nicoletti (2015). Old ingredients for a new recipe? Neem-cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol. Res. 114, 391–397.

    Article  Google Scholar 

  18. R. Pavela (2015). Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind. Crops Prod. 76, 174–187.

    Article  CAS  Google Scholar 

  19. R. Pavela (2015). Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res.. doi:10.1007/s00436-015-4614-9.

    Google Scholar 

  20. J. S. Coelho, N. D. L. Santos, T. H. Napoleao, F. S. Gomes, R. S. Ferreira, and R. B. Zingali (2009). Effect of Moringa oleifera lectin on development and mortality of Aedes aegypti larvae. Chemosphere 77, 934–938.

    Article  CAS  Google Scholar 

  21. F. P. Freitas, S. P. Freitas, G. C. S. Lemos, I. J. C. Vieira, G. A. Gravina, and F. J. A. Lemosa (2010). Comparative larvicidal activity of essential oils from three medicinal plants against Aedes aegypti L. Chem. Biodiv. 7, 2801–2807.

    Article  CAS  Google Scholar 

  22. M. Govindarajan (2010). Larvicidal efficacy of Ficus benghalensis L plant leaf extracts against Culex quinquefasciatus Say Aedes aegypti L and Anopheles stephensi L (Diptera: Culicidae). Eur. Rev. Med. Pharmacol. Sci. 14, 107–111.

    CAS  Google Scholar 

  23. S. Ravikumar, M. S. Ali, and J. M. Beula (2011). Mosquito larvicidal efficacy of seaweeds extracts against dengue vector of Aedes aegypti. Asian Pac. Trop. Biomed. 1, S143–S146.

    Article  Google Scholar 

  24. R. Pavela (2014). Insecticidal properties of Pimpinella anisum essential oils against the Culex quinquefasciatus and the non-target organism Daphnia magna. J. Asia Pac. Entomol. 17, 287–293.

    Article  CAS  Google Scholar 

  25. M. Govindarajan and G. Benelli (2016). α-Humulene and β-elemene from Syzygium zeylanicum (Myrtaceae) essential oil: highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus and Culex tritaeniorhynchus (Diptera: Culicidae). Parasitol. Res.. doi:10.1007/s00436-016-5025-2.

    Google Scholar 

  26. M. Govindarajan and G. Benelli (2016). Eco-friendly larvicides from Indian plants: effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors. Ecotoxicol. Environ. Saf. 133, 395–402.

    Article  CAS  Google Scholar 

  27. H. Mehlhorn, G. Schmahl, and J. Schmidt (2005). Extract of the seeds of the plant Vitex agnus castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies. Parasitol. Res. 95, 363–365.

    Article  Google Scholar 

  28. H. Mehlhorn Nature Helps. How Plants and Other Organisms Contribute to Solve Health Problems (Springer, Berlin, 2011), pp. 1–372.

    Google Scholar 

  29. A. Amer and H. Mehlhorn (2006). Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol. Res. 99, 478–490.

    Article  Google Scholar 

  30. A. Amer and H. Mehlhorn (2006). The sensilla of Aedes and Anopheles mosquitoes and their importance in repellency. Parasitol. Res. 99, 491–499.

    Article  Google Scholar 

  31. R. Pavela and G. Benelli (2016). Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors—a review. Exp. Parasitol. 167C, 103–108.

    Article  Google Scholar 

  32. J. Subramaniam, K. Kovendan, P. Mahesh Kumar, K. Murugan, and W. Walton (2012). Mosquito larvicidal activity of Aloe vera (Family: Liliaceae) leaf extract and Bacillus sphaericus, against Chikungunya vector, Aedes aegypti. Saudi J. Biol. Sci. 19, 503–509.

    Article  Google Scholar 

  33. J. Subramaniam, K. Murugan, and K. Kovendan (2012). Larvicidal and pupcidal efficacy of Momordica charantia leaf extract and bacterial insecticide, Bacillus thuringiensis against malarial vector, Anopheles stephensi Liston. (Diptera: Culicidae). J. Biopest. 5, 163–169.

    Google Scholar 

  34. A. Amer and H. Mehlhorn (2006). Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol. Res. 99, 466–472.

    Article  Google Scholar 

  35. A. Amer and H. Mehlhorn (2006). Persistency of larvicidal effects of plant oil extracts under different storage conditions. Parasitol. Res. 99, 473–477.

    Article  Google Scholar 

  36. M. Semmler, F. Abdel-Ghaffar, K. A. S. Al-Rasheid, and H. Mehlhorn (2009). Nature helps: from research to products against blood sucking arthropods. Parasitol. Res. 105, 1483–1487.

    Article  Google Scholar 

  37. M. Govindarajan, M. Rajeswary, S. L. Hoti, A. Bhattacharyya, and G. Benelli (2016). Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitol. Res. 115, 807–815.

    Article  Google Scholar 

  38. M. Govindarajan, M. Rajeswary, S. L. Hoti, and G. Benelli (2016). Larvicidal potential of carvacrol and terpinen-4-ol from the essential oil of Origanum vulgare (Lamiaceae) against Anopheles stephensi, Anopheles subpictus, Culex quinquefasciatus and Culex tritaeniorhynchus (Diptera: Culicidae). Res. Vet. Sci. 104, 77–82.

    Article  CAS  Google Scholar 

  39. M. Govindarajan, M. Rajeswary, and G. Benelli (2016). Chemical composition, toxicity and effects on non-target organisms of Pinus kesiya essential oil: an eco-friendly larvicide against mosquito vectors. Ecotoxicol. Environ. Saf. 129, 85–90.

    Article  CAS  Google Scholar 

  40. M. Govindarajan, M. Rajeswary, and G. Benelli (2016). δ-Cadinene, Calarene and δ-4-Carene from Kadsura heteroclita essential oil as novel larvicides against malaria, dengue and filariasis mosquitoes. Comb. Chem. High Throughput Screen. doi:10.2174/1386207319666160506123520.

    Google Scholar 

  41. K. Murugan, S. J. Hwang, K. Kovendan, K. P. Kumar, C. Vasugi, and A. N. Kumar (2011). Use of plant products and copepods for control of the dengue vector, Aedes aegypti. Hydrobiologia 666, 331–338.

    Article  Google Scholar 

  42. K. Murugan, G. Benelli, A. Suganya, D. Dinesh, C. Panneerselvam, M. Nicoletti, J. S. Hwang, P. Mahesh Kumar, J. Subramaniam, and U. Suresh (2015). Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol. Res. 114, 2243–2253.

    Article  Google Scholar 

  43. K. Murugan, G. Benelli, C. Panneerselvam, J. Subramaniam, T. Jeyalalitha, D. Dinesh, M. Nicoletti, J. S. Hwang, U. Suresh, and P. Madhiyazhagan (2015). Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp. Parasitol. 153, 129–138.

    Article  CAS  Google Scholar 

  44. G. Benelli (2016). Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol. Res. 115, 23–34.

    Article  Google Scholar 

  45. A. P. Sih, M. Crowley, J. P. Mcpeek, and K. Strolaneier (1985). Predation, competition and prey communities: a review of field experiments. Annu. Rev. Ecol. Syst. 16, 269–311.

    Article  Google Scholar 

  46. G. Bowatte, P. Perera, G. Senevirathne, S. Meegaskumbura, and M. Meegaskumbura (2013). Tadpoles as dengue mosquito (Aedes aegypti) egg predators. Biol. Control 67, 469–474.

    Article  Google Scholar 

  47. K. Kalimuthu, S. M. Lin, L. C. Tseng, K. Murugan, and J. S. Hwang (2014). Bio-efficacy potential of seaweed Gracilaria firma with copepod, Megacyclops formosanus for the control larvae of dengue vector Aedes aegypti. Hydrobiologia 741, 113–123.

    Article  CAS  Google Scholar 

  48. K. Murugan, V. Priyanka, D. Dinesh, P. Madhiyazhagan, C. Panneerselvam, J. Subramaniam, U. Suresh, B. Chandramohan, M. Roni, M. Nicoletti, A. A. Alarfaj, A. Higuchi, M. A. Munusamy, H. F. Khater, R. H. Messing, and G. Benelli (2015). Enhanced predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector Aedes aegypti in an aquatic environment treated with mosquitocidal nanoparticles. Parasitol. Res. 114, 3601–3610.

    Article  Google Scholar 

  49. K. Murugan, D. Dinesh, P. Jenil Kumar, C. Panneerselvam, J. Subramaniam, P. Madhiyazhagan, U. Suresh, M. Nicoletti, A. A. Alarfaj, M. A. Munusamy, A. Higuchi, H. Mehlhorn, and G. Benelli (2015). Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi. Parasitol. Res. 114, 4645–4654.

    Article  Google Scholar 

  50. K. Murugan, P. Aruna, C. Panneerselvam, P. Madhiyazhagan, M. Paulpandi, J. Subramaniam, R. Rajaganesh, H. Wei, M. Saleh Alsalhi, S. Devanesan, M. Nicoletti, B. Syuhei, A. Canale, and G. Benelli (2016). Fighting arboviral diseases: low toxicity on mammalian cells, dengue growth inhibition (in vitro) and mosquitocidal activity of Centroceras clavulatum-synthesized silver nanoparticles. Parasitol. Res. 115, 651–662.

    Article  Google Scholar 

  51. J. Hadjinicolaou and B. Betzios Gambusia fish as a Means of Mosquito Control of Anopheles sacharovi in Greece (World Health Organization, Geneva, 1973).

    Google Scholar 

  52. M. Motabar Larvivorous Fish, Gambusia affinis: A Review (World Health Organization, Geneva, 1978).

    Google Scholar 

  53. A. K. Hati and D. C. Saha (1989). Poecilia reticulata as a predator of Culex quinquefasciatus larvae in surface drains in Calcutta fishes of inland ecosystems. Proceedings of the MRCCICFRI workshop, New Delhi, 27–28 September 1989 (Malaria Research Centre (ICMR), Delhi), pp. 196–203.

  54. V. P. Sharma(1989). Role of fishes in vector control in India, in Sharma VP, Ghosh A (eds.), Larvivorous fishes of inland ecosystems. Proceedings of the MRC-CICFRI workshop, New Delhi, 27–28 September 1989 (Malaria Research Centre (ICMR) 1994, Delhi), pp. 1–19.

  55. R. N. Prasad, M. K. Das, K. J. Virk and S. Haq (1994). Use of Gambusia affinis on large scale for control of malaria vector: an overview, in V. P. Sharma and A. Ghosh (eds.), Larvivorous fishes of inland ecosystems: Proceedings of the MRC-CICFRI workshop, New Delhi, 27–28 September 1989. (MalariaResearch Centre (ICMR), Delhi), pp. 169–181.

  56. V. K. Dua and S. K. Sharma (1994). Use of guppy and Gambusia fishes for control of mosquito breeding at BHEL industrial complex, in V. P. Hardwar and A. Ghosh (eds.), Larvivorous fishes of inland ecosystems. Proceedings of the MRC-C/CFRI workshop, New Delhi, 27–28 September1989 (Malaria Research Centre (ICMR) 1994, Delhi), pp. 35–45.

  57. K. Murugan, J. S. E. Venus, C. Panneerselvam, S. Bedini, B. Conti, M. Nicoletti, S. Kumar Sarkar, J. S. Hwang, J. Subramaniam, P. Madhiyazhagan, P. Mahesh Kumar, D. Dinesh, U. Suresh, and G. Benelli (2015). Biosynthesis, mosquitocidal and antibacterial properties of Toddalia asiatica-synthesized silver nanoparticles: do they impact predation of guppy Poecilia reticulata against the filariasis mosquito Culex quinquefasciatus? Environ. Sci. Pollut. Res. 2, 17053–17064.

    Article  Google Scholar 

  58. K. Murugan, D. Dinesh, M. Paulpandi, A. Dakhellah Meqbel Althbyani, J. Subramaniam, P. Madhiyazhagan, L. Wang, U. Suresh, P. Mahesh Kumar, J. Mohan, R. Rajaganesh, H. Wei, K. Kalimuthu, M. N. Parajulee, H. Mehlhorn, and G. Benelli (2015). Nanoparticles in the fight against mosquito-borne diseases: bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 114, 4349–4361.

    Article  Google Scholar 

  59. J. Subramaniam, K. Murugan, C. Panneerselvam, K. Kovendan, P. Madhiyazhagan, P. Mahesh Kumar, D. Dinesh, B. Chandramohan, U. Suresh, M. Nicoletti, A. Higuchi, J. S. Hwang, S. Kumar, A. A. Alarfaj, A. A. Munusamy, R. H. Messing, and G. Benelli (2016). Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach? Environ. Sci. Pollut. Res.. doi:10.1007/s11356-015-5253-5.

    Google Scholar 

  60. H. A. Salam, P. Rajiv, M. Kamaraj, P. Jagadeeswaran, S. Gunalan, and R. Sivaraj (2012). Plants: green route for nanoparticles synthesis. Int. Res. J. Biol. Sci. 1, 85–90.

    Google Scholar 

  61. D. S. Goodsell Bionanotechnology: Lessons from Nature (Wiley, Hoboken, 2004).

    Book  Google Scholar 

  62. S. Marimuthu, A. A. Rahuman, G. Rajakumar, T. Santhoshkumar, A. V. Kirthi, C. Jayaseelan, A. Bagavan, A. A. Zahir, G. Elango, and C. Kamaraj (2011). Evaluation of green synthesized silver nanoparticles against parasites. Parasitol. Res. 10, 2212–2224.

    Google Scholar 

  63. D. Dinesh, K. Murugan, P. Madhiyazhagan, C. Panneerselvam, M. Nicoletti, W. Jiang, G. Benelli, B. Chandramohan, and U. Suresh (2015). Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol. Res. 114, (4), 1519–1529.

    Article  Google Scholar 

  64. G. Benelli (2016). Plant-mediated synthesis of nanoparticles: a newer and safer tool against mosquito-borne diseases? Asian Pac. J. Trop. Biomed.. doi:10.1016/j.apjtb.2015.10.015.

    Google Scholar 

  65. G. Benelli (2016). Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzyme Microb. Technol.. doi:10.1016/j.enzmictec.2016.08.022.

    Google Scholar 

  66. M. Govindarajan, M. Rajeswary, K. Veerakumar, U. Muthukumaran, S. L. Hoti, H. Mehlhorn, D. R. Barnard, and G. Benelli (2016). Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control. Parasitol. Res. 115, 723–733.

    Article  Google Scholar 

  67. A. Jaganathan, K. Murugan, C. Panneerselvam, P. Madhiyazhagan, D. Dinesh, C. Vadivalagan, A. T. Aziz, B. Chandramohan, U. Suresh, R. Rajaganesh, J. Subramaniam, M. Nicoletti, A. Higuchi, A. A. Alarfaj, M. A. Munusamy, S. Kumar, and G. Benelli (2016). Earthworm-mediated synthesis of silver nanoparticles: a potent tool against hepatocellular carcinoma, pathogenic bacteria, Plasmodium parasites and malaria mosquitoes. Parasitol. Int. 65, 276–284.

    Article  CAS  Google Scholar 

  68. M. S. Ali, V. Anuradha, N. Yogananth, R. Rajathilagam, A. Chanthuru and S. Mohamed Marzook (2015). Green synthesis of Silver nanoparticle by Acanthus ilicifolius mangrove plant against Armigeres subalbatus and Aedes aegypti mosquito larvae. Int. J. Nano Dimens. 6(2), 197–204, Spring 2015 ISSN: 2008-886.

  69. M. S. Syed Ali, V. Anuradha, S. A. Sirajudeen, P. P. Vijaya, N. Yogananth, R. Rajan, and P. KalithaParveen (2013). Mosquito larvicidal properties of volatile oil from salt marsh mangrove plant of Sesuvium portulacastrum against Anopheles stephensi and Aedes aegypti. J. Coast. Life Med. 1, 36–41.

    Google Scholar 

  70. S. Balakrishnan, M. Srinivasan, and E. Mohanraj (2014). Biosynthesis of silver nanoparticles from mangrove plant (Avicennia marina) extract and their potential mosquito larvicidal property. J. Parasit. Dis. 12, 233–239.

    Google Scholar 

  71. M. Gnanadesigan, M. Anand, S. Ravikumar, M. Maruthupandy, V. Vijayakumar, S. Selvam, M. Dhineshkumar, and A. K. Kumaraguru (2011). Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. Asian Pac. J. Trop. Med. 4, 799–803.

    Article  CAS  Google Scholar 

  72. J. Subramaniam, K. Murugan, C. Panneerselvam, K. Kovendan, P. Madhiyazhagan, D. Dinesh, P. M. Kumar, B. Chandramohan, U. Suresh, R. Rajaganesh, M. S. Alsalhi, S. Devanesan, M. Nicoletti, A. Canale, and G. Benelli (2016). Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ. Sci. Pollut. Res. Int. 23, 7543–7558.

    Article  CAS  Google Scholar 

  73. V. Sujitha, K. Murugan, M. Paulpandi, C. Panneerselvam, U. Suresh, M. Roni, M. Nicoletti, A. Higuchi, P. Madhiyazhagan, J. Subramaniam, D. Dinesh, C. Vadivalagan, B. Chandramohan, A. A. Alarfaj, M. A. Munusamy, D. R. Barnard, and G. Benelli (2015). Green synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol. Res. 114, 3315–3325.

    Article  Google Scholar 

  74. K. Kathiresan, T. Ramanathan (1997). Medicinal plants of Parangipettai coast, Monograph Annamalai University Tamil Nadu, India, 1, p. 79.

  75. B. V. Bhimba, D. A. A. D. Franco, J. M. Mathew, G. M. Jose, E. L. Joel, and M. Thangaraj (2012). Anticancer and antimicrobial activity of mangrove derived fungi Hypocrea lixii VB1. Chin. J. Nat. Med. 10, 77–80.

    Article  Google Scholar 

  76. B. Nuntavan, J. Aranya, S. Prapinsara, T. Wiro, A. Sanit, H. Harry, S. Fong, M. John, Pezzuto, and K. Jerry (2003). Pharmacological studies of plants in the mangrove forest. Thai J. Phytopharm. 10, 1–12.

    Google Scholar 

  77. K. Wada, A. Kinjo, M. Uehara and K. Takara (2002). Antioxidant activities of mangrove trees. Sci. Links Jpn. 189–192.

  78. U. Suresh, K. Murugan, G. Benelli, M. Nicoletti, D. R. Barnard, C. Panneerselvam, P. Mahesh Kumar, J. Subramaniam, D. Dinesh, and B. Chandramohan (2015). Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 114, 1551–1562.

    Article  Google Scholar 

  79. D. J. Finney Probit Analysis (Cambridge University Press, London, 1971).

    Google Scholar 

  80. S. Shrivastava and D. Dash (2010). Label-free colorimetric estimation of proteins using nanoparticles of silver. Nano Micro Lett. 2, 164–168.

    Article  CAS  Google Scholar 

  81. S. Ponarulselvam, C. Panneerselvam, K. Murugan, N. Aarthi, K. Kalimuthu, and S. Thangamani (2012). Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac. J. Trop. Biomed. 2, 574–580.

    Article  CAS  Google Scholar 

  82. N. A. Begum, S. Mondal, S. Basu, R. A. Laskar, and D. Mandal (2009). Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Colloid Surf. B Biointerfaces 71, 113–118.

    Article  CAS  Google Scholar 

  83. H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, and S. P. De (2009). Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloid Surf. A 339, 134–139.

    Article  CAS  Google Scholar 

  84. S. Anil Kumar, M. K. Abyaneh, S. W. Gosavi, S. K. Kulkarni, and R. Pasricha (2007). Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol. Lett. 29, 439–445.

    Article  CAS  Google Scholar 

  85. A. Nabikhan, K. Kandasamy, A. Raj, and N. M. Alikunhi (2010). Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids Surf. B Biointerfaces 79, 488–493.

    Article  CAS  Google Scholar 

  86. S. Ankanna, T. N. V. K. V. Prasad, E. K. Elumalai, and N. Savithramma (2010). Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem bark. Dig. J. Nanomater Biostruct. 5, 369–372.

    Google Scholar 

  87. N. Savithramma, M. L. Rao, and P. Suvarnalatha Devi (2011). Evaluation of antibacterial efficacy of biologically synthesized silver nanoparticles using stem barks of Boswellia ovalifoliolata Bal. and Henry and Shorea tumbuggaia Ruxb. J. Biol. Sci. 11, 39–45.

    Article  Google Scholar 

  88. S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry (2006). Synthesis of gold nanoparticles and silver nanoparticles using Aloe vera plant extracts. Biotechnol. Prog. 22, 577–583.

    Article  CAS  Google Scholar 

  89. B. Ankamwar, M. Chaudhary, and M. Sastry (2005). Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth. React. Inorg. Metal Org. Nano Metal Chem. 35, 19–26.

    Article  CAS  Google Scholar 

  90. D. Jain, H. K. Daima, S. Kachnwaha, and S. L. Kothari (2009). Synthesis of plant mediated silver nanoparticles using Papaya fruit extract and evaluation of their antimicrobial activities. Dig. J. Nanomater Biostruct. 4, 723–727.

    Google Scholar 

  91. P. Magudapathi, P. Gangopadhyay, E. K. Panigrahi, K. G. M. Nair, and S. Dhara (2001). Electrical transport studies of silver nanoclusters embedded in glass matrix. Physica B 299, 142–146.

    Article  Google Scholar 

  92. J. Y. Song, K. H. Jang, and B. S. Kim (2009). Biological synthesis of gold nanoparticles using Magnolia kobus and Diospyros kaki leaf extracts. Proc. Biochem. 44, 1133–1138.

    Article  CAS  Google Scholar 

  93. M. Jayaraman, A. Senthilkumar, and V. Venkatesalu (2015). Evaluation of some aromatic plant extracts for mosquito larvicidal potential against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. Parasitol. Res. 114, (4), 1511–1518.

    Article  CAS  Google Scholar 

  94. V. S. Meenakshi and K. Jayaprakash (2014). Mosquito larvicidal efficacy of leaf extract from mangrove plant Rhizophora mucronata (Family: Rhizophoraceae) against Anopheles and Aedes species. J. Pharmacogn. Phytochem. 3, (1), 78–83.

    Google Scholar 

  95. P. Pradeepa, K. Subalakshmi, A. Saranya, P. Dinesh, V. A. Raj, and T. Ramanathan (2015). Milky Mangrove Excoecaria agallocha L. Plant as a source for potential mosquito larvicides. J. Appl. Pharm. Sci. 5, (3), 102–105.

    Article  Google Scholar 

  96. B. Chandramohan, K. Murugan, C. Panneerselvam, P. Madhiyazhagan, R. Chandirasekar, D. Dinesh, P. Mahesh Kumar, K. Kovendan, U. Suresh, J. Subramaniam, R. Rajaganesh, A. T. Aziz, B. Syuhei, M. Saleh Alsalhi, S. Devanesan, M. Nicoletti, H. Wei, and G. Benelli (2016). Characterization and mosquitocidal potential of neem cake-synthesized silver nanoparticles: genotoxicity and impact on predation efficiency of mosquito natural enemies. Parasitol. Res. 115, 1015–1025.

    Article  Google Scholar 

  97. C. D. Patil, H. P. Borase, S. V. Patil, R. B. Salunkhe, and B. K. Salunke (2012). Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecillia reticulata. Parasitol. Res. 111, 555–562.

    Article  Google Scholar 

  98. S. Roy, K. Rao, C. Bhuvaneswari, A. Giri, and L. N. Mangamoori (2010). Phytochemical analysis of Andrographis paniculata extract and its antimicrobial activity. World J. Microbiol. Biotechnol. 26, 85–91.

    Article  CAS  Google Scholar 

  99. A. Thill, O. Zeyons, O. Spalla, F. Chauvat, J. Rose, M. Auffan, and A. M. Flank (2006). Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol. 40, 6151–6156.

    Article  CAS  Google Scholar 

  100. A. E. Nel (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8, 543–557.

    Article  CAS  Google Scholar 

  101. S. J. Soenen (2011). Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6, (446–465), 30.

    Google Scholar 

  102. J. L. Elechiguerra, J. L. Burt, J. R. Morones, A. Camacho-Bragado, X. Gao, H. H. Lara, and M. J. Yacaman (2005). Interaction of silver nanoparticles with HIV-1. J. Nanobiotech. 3, 6.

    Article  Google Scholar 

Download references

Acknowledgements

The author (Dr. Jayapal Subramaniam/Principal Investigator/NPDF-DST-SERB/Project File No. PDF/2015/000650) is grateful to the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi, India for providing financial support. The authors are grateful to the Department of Science and Technology (New Delhi, India), Project No. DST/SB/EMEQ-335/2013. This work was also supported by the King Saud University, Deanship of Scientific Research, and College of Sciences Research Center. Funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Benelli.

Ethics declarations

Human and Animal Rights Statement

All applicable international and national guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugan, K., Dinesh, D., Paulpandi, M. et al. Mangrove Helps: Sonneratia alba-Synthesized Silver Nanoparticles Magnify Guppy Fish Predation Against Aedes aegypti Young Instars and Down-Regulate the Expression of Envelope (E) Gene in Dengue Virus (Serotype DEN-2). J Clust Sci 28, 437–461 (2017). https://doi.org/10.1007/s10876-016-1115-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1115-7

Keywords

Navigation