Skip to main content
Log in

A study on the tunable magnetic and magnetodielectric properties of KBFO-CFO composite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multiferroic materials are very important in the current need for material science and multifunctional technological applications. KBiFe2O5 (KBFO) belongs to the brownmillerite family, which shows the weak magnetic and magnetodielectric coupling in the earlier report. To overcome these challenges, the present work focuses on synthesizing and characterization of polycrystalline multiferroic composites. In this regard, the parent material KBiFe2O5 (KBFO), CoFe2O4 (CFO), and its composites (1 − x)KBFO-(x)(CFO) where x = 0.1, 0.2, and 0.3 are synthesized using the citric-assisted sol–gel method. The composite’s magnetic, dielectric, and magnetodielectric properties are investigated over a wide temperature range (300 K to 873 K) to verify its magnetic and dielectric transitions. Observations include improved dielectric properties at 4.602 × 106, enhanced magnetic coercivity at 1488.7955 ± 18.8897 Oe for the 0.8KBFO-0.2CFO composite, and remanent magnetization at 6.5899 ± 0.0551 emu/g for the 0.7KBFO-0.3CFO composite. We observed the enhanced magnetodielectric (MD) properties of the 0.8KBFO-0.2CFO composite at room temperature, which are ~ 3% in field-scanning mode and ~ 20% in frequency scanning mode. Switching MD coupling in the composite at room temperature can be important for applications involving spintronics, energy harvesting, and information storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available at a reasonable request.

References

  1. A. Hirohata et al., Review on spintronics: principles and device applications. J. Magn. Magn. Mater. (2020). https://doi.org/10.1016/j.jmmm.2020.166711

    Article  Google Scholar 

  2. G. Catalan, Magnetocapacitance without magnetoelectric coupling. Appl. Phys. Lett. 88(10), 1–4 (2006). https://doi.org/10.1063/1.2177543

    Article  CAS  Google Scholar 

  3. E. Spain, A. Venkatanarayanan, Review of Physical Principles of Sensing and Types of Sensing Materials, vol. 13 (Elsevier, Amsterdam, 2014). https://doi.org/10.1016/B978-0-08-096532-1.01302-9

    Book  Google Scholar 

  4. N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104(29), 6694–6709 (2000). https://doi.org/10.1021/jp000114x

    Article  CAS  Google Scholar 

  5. M. Fiebig, T. Lottermoser, D. Meier, M. Trassin, The evolution of multiferroics. Nat. Rev. Mater. (2016). https://doi.org/10.1038/natrevmats.2016.46

    Article  Google Scholar 

  6. M.M. Vopson, Fundamentals of multiferroic materials and their possible applications. Crit. Rev. Solid State Mater. Sci. 40(4), 223–250 (2015). https://doi.org/10.1080/10408436.2014.992584

    Article  CAS  Google Scholar 

  7. A. Hossain et al., Optical, magnetic and magneto-transport properties of Nd 1-A Mn0.5Fe0.5O3-δ (A = Ca, Sr, Ba; x = 0, 0.25). J. Alloys Compd. 847, 156297 (2020). https://doi.org/10.1016/j.jallcom.2020.156297

    Article  CAS  Google Scholar 

  8. W. Ji, K. Yao, Y.C. Liang, Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3 thin films. Adv. Mater. 22(15), 1763–1766 (2010). https://doi.org/10.1002/adma.200902985

    Article  CAS  PubMed  Google Scholar 

  9. G. Zhang et al., New high tc multiferroics KBiFe2O5 with narrow band gap and promising photovoltaic effect. Sci. Rep. 3, 1–9 (2013). https://doi.org/10.1038/srep01265

    Article  CAS  Google Scholar 

  10. B. Mettout et al., Magnetoelectric, photovoltaic, and magnetophotovoltaic effects in KBiF e2 O5. Phys. Rev. B 93, 1–4 (2016). https://doi.org/10.1103/PhysRevB.93.195123

    Article  CAS  Google Scholar 

  11. K. Chandrakanta et al., Temperature-dependent magnetodielectric, magnetoimpedance, and magnetic field controlled dielectric relaxation response in KBiFe2O5. J. Magn. Magn. Mater. (2022). https://doi.org/10.1016/j.jmmm.2022.169047

    Article  Google Scholar 

  12. K. Sakthipandi, N. Lenin, R. Rajesh Kanna, A. Sabah Afroze, M. Sivabharathy, PVA-doped NiNdxFe2-xO4 nanoferrites: tuning of dielectric and magnetic properties. J. Magn. Magn. Mater. 485, 105–111 (2019). https://doi.org/10.1016/j.jmmm.2019.04.074

    Article  CAS  Google Scholar 

  13. C.E. Ciomaga et al., Preparation and properties of the CoFe2O4-Nb-Pb(Zr,Ti)O3 multiferroic composites prepared in situ by gel-combustion method. J. Alloys Compd. 485, 1–2 (2009). https://doi.org/10.1016/j.jallcom.2009.05.101

    Article  CAS  Google Scholar 

  14. N. Hassan, B. Want, Magneto-dielectric properties of Mn-doped CoFe2O4: Yb-doped PbZrTiO3 multiferroic composites. J. Mater. Sci.: Mater. Electron. 32(5), 5579–5593 (2021). https://doi.org/10.1007/s10854-021-05280-3

    Article  CAS  Google Scholar 

  15. M. Kumar, S. Shankar, O.P. Thakur, A.K. Ghosh, Effects of co-substitution on dielectric, magnetic properties and magnetoelectric coupling in nano CoFe2O4. Mater. Lett. 143, 241–243 (2015). https://doi.org/10.1016/j.matlet.2014.12.101

    Article  CAS  Google Scholar 

  16. S. Thakur et al., Dielectric and multiferroic properties of Na0.5Bi0.5TiO3–CoFe2O4 heterostructure composite ceramic. J. Mater. Sci.: Mater. Electron. 33(8), 5831–5845 (2022). https://doi.org/10.1007/s10854-022-07766-0

    Article  CAS  Google Scholar 

  17. Z. Mahhouti et al., Chemical synthesis and magnetic properties of monodisperse cobalt ferrite nanoparticles. J. Mater. Sci.: Mater. Electron. 30(16), 14913–14922 (2019). https://doi.org/10.1007/s10854-019-01863-3

    Article  CAS  Google Scholar 

  18. K. Chandrakanta et al., Evidence of room-temperature magnetodielectric effect in brownmillerite KBiFe2O5 through magnetic, complex dielectric, and impedance study. J. Mater. Sci.: Mater. Electron. 31(18), 15875–15884 (2020). https://doi.org/10.1007/s10854-020-04149-1

    Article  CAS  Google Scholar 

  19. K. Sakthipandi, B. Ganesh Babu, G. Rajkumar, A. Hossian, M. Srinidhi Raghavan, M. Rajesh Kumar, Investigation of magnetic phase transitions in Ni0.5Cu0.25Zn0.25Fe2-La O4 nanoferrites using magnetic and in-situ ultrasonic measurements. Phys. B Condens. Matter 645, 414280 (2022). https://doi.org/10.1016/j.physb.2022.414280

    Article  CAS  Google Scholar 

  20. X.Z. Zhai, H.M. Deng, W.L. Zhou, P.X. Yang, J.H. Chu, Z. Zheng, Structural, optical and magnetic tunability in KBiFe2O5 multiferroics. RSC Adv. 5(100), 82351–82356 (2015). https://doi.org/10.1039/c5ra16030h

    Article  CAS  Google Scholar 

  21. J. Venturini, R.Y.S. Zampiva, S. Arcaro, C.P. Bergmann, Sol–gel synthesis of substoichiometric cobalt ferrite (CoFe2O4) spinels: influence of additives on their stoichiometry and magnetic properties. Ceram. Int. 44(11), 12381–12388 (2018). https://doi.org/10.1016/j.ceramint.2018.04.026

    Article  CAS  Google Scholar 

  22. M. Zhang, Z. Wang, S. Lin, Y. Wang, Y. Pan, Investigation on a new multiferroic compound KBiFe2O5: structural, optical, electrical and magnetic properties. J. Alloys Compd. 699, 561–566 (2017). https://doi.org/10.1016/j.jallcom.2017.01.041

    Article  CAS  Google Scholar 

  23. K. Chandrakanta et al., Evidence of magneto-dielectric coupling at room temperature in polycrystalline KBiFe2O5. AIP Conf. Proc. (2019). https://doi.org/10.1063/1.5113340

    Article  Google Scholar 

  24. D.S. Vavilapalli et al., Multifunctional brownmillerite KBiFe2O5: structural, magneto-dielectric, optical, photoelectrochemical studies and enhanced photocatalytic activity over perovskite BiFeO3. Sol. Energy Mater. Sol. Cells (2019). https://doi.org/10.1016/j.solmat.2019.109940

    Article  Google Scholar 

  25. R. Das, R.N.P. Choudhary, Dielectric relaxation and magneto-electric characteristics of lead-free double perovskite: Sm 2 NiMnO 6, 2019

  26. L. Sun et al., Sol–gel synthesized pure CaCu3Ti4O12 with very low dielectric loss and high dielectric constant. Ceram. Int. 41(10), 13486–13492 (2015). https://doi.org/10.1016/j.ceramint.2015.07.140

    Article  CAS  Google Scholar 

  27. P. Sharma, S. Hajra, S. Sahoo, P.K. Rout, R.N.P. Choudhary, Structural and electrical characteristics of gallium modified PZT ceramics. Proc. Appl. Ceram. 11(3), 171–176 (2017). https://doi.org/10.2298/PAC1703171S

    Article  CAS  Google Scholar 

  28. L. Zhu, Exploring strategies for high dielectric constant and low loss polymer dielectrics. J. Phys. Chem. Lett. 5, 3677–3687 (2014). https://doi.org/10.1021/jz501831q

    Article  CAS  PubMed  Google Scholar 

  29. D. Hu et al., Synthesis and magnetic properties of monodisperse CoFe2O4 nanoparticles coated by SiO2. Ceram. Int. 44(18), 22462–22466 (2018). https://doi.org/10.1016/j.ceramint.2018.09.014

    Article  CAS  Google Scholar 

  30. S.R. Mohapatra, P.N. Vishwakarma, S.D. Kaushik, A.K. Singh, Effect of holmium substitution on the magnetic and magnetodielectric properties of multiferroic Bi2Fe4O9. J. Appl. Phys. (2017). https://doi.org/10.1063/1.4994645

    Article  Google Scholar 

  31. B.K. Bammannavar, L.R. Naik, Electrical properties and magnetoelectric effect in (x)Ni 0.5Zn0.5Fe2O4+(1-x)BPZT composites. Smart Mater. Struct. (2009). https://doi.org/10.1088/0964-1726/18/8/085013

    Article  Google Scholar 

  32. J. Venturini et al., Excess of cations in the sol–gel synthesis of cobalt ferrite (CoFe2O4) a pathway to switching the inversion degree of spinels. J. Magn. Magn. Mater. 482(2018), 1–8 (2019). https://doi.org/10.1016/j.jmmm.2019.03.057

    Article  CAS  Google Scholar 

  33. W. Chen, Z.H. Wang, W. Zhu, O.K. Tan, Ferromagnetic, ferroelectric and dielectric properties of Pb(Zr 0.53Ti0.47)O3/CoFe2O4 multiferroic composite thick films. J. Phys. D Appl. Phys. (2009). https://doi.org/10.1088/0022-3727/42/7/075421

    Article  Google Scholar 

  34. A. Shokri, S.F. Shayesteh, K. Boustani, The role of Co ion substitution in SnFe2O4 spinel ferrite nanoparticles: study of structural, vibrational, magnetic and optical properties. Ceram. Int. 44(18), 22092–22101 (2018). https://doi.org/10.1016/j.ceramint.2018.08.319

    Article  CAS  Google Scholar 

  35. X. Zeng et al., Direct observation of cation distributions of ideal inverse spinel CoFe2O4 nanofibres and correlated magnetic properties. Nanoscale 9(22), 7493–7500 (2017). https://doi.org/10.1039/c7nr02013a

    Article  CAS  PubMed  Google Scholar 

  36. R. Schmidt et al., Magnetoimpedance spectroscopy of epitaxial multiferroic thin films. Phys. Rev. B Condens. Matter Mater. Phys. (2012). https://doi.org/10.1103/PhysRevB.86.035113

    Article  Google Scholar 

  37. S. Kumari et al., Evidence of strong magneto-dielectric coupling and enhanced electrical insulation at room temperature in Nd and Mn co-doped bismuth ferrite. J. Appl. Phys. (2017). https://doi.org/10.1063/1.4994560

    Article  Google Scholar 

  38. O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J.M. Siqueiros, Frequency-temperature response of ferroelectromagnetic pb (Fe1/2 Nb1/2) O3 ceramics obtained by different precursors. Part II. Impedance spectroscopy characterization. J. Appl. Phys. 97(8), 0–8 (2005). https://doi.org/10.1063/1.1870100

    Article  CAS  Google Scholar 

  39. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. (2008). https://doi.org/10.1063/1.2836410

    Article  Google Scholar 

Download references

Acknowledgements

DPS would like to acknowledge the Department of Science and Technology (DST) for fellowship (No: DST/INSPIRE Fellowship/2020/IF200304). AKS would like to acknowledge UGC-DAE CSR Mumbai, India (Project No: CRS/2021-22/03/585) for funding.

Funding

This work was supported by UGC-DAE Consortium for Scientific Research, University Grants Commission (Grant no. CRS/2021-22/03/585), Department of Science and Technology, Ministry of Science and Technology, India (Grant no. DST/INSPIRE Fellowship/2020/IF200304).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Mr. D. P. Sahu conducted all experiments, performed data analysis, and wrote the first draft of the manuscript. Miss A. Mohanty and G. Palai participated in analyzing XRD data. Mr. D. P. Sahu, Dr. K. Chandrkanta, and R. Jena analyzed dielectric data. Dr. S. D. Kaushik contributed to the magnetic data analysis. Dr. A. K. Singh served as the overall originator of the scientific work.

Corresponding author

Correspondence to A. K. Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This work is submitted in Compliance with Ethical Standards. It is not being submitted nor published elsewhere in any form or language.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, D.P., Mohanty, A., Palai, G. et al. A study on the tunable magnetic and magnetodielectric properties of KBFO-CFO composite. J Mater Sci: Mater Electron 35, 820 (2024). https://doi.org/10.1007/s10854-024-12578-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12578-5

Navigation