Skip to main content
Log in

Chemical synthesis and magnetic properties of monodisperse cobalt ferrite nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a successful synthesis of magnetic cobalt ferrite (CoFe2O4) nanoparticles is presented. The synthesized CoFe2O4 nanoparticles have a spherical shape and highly monodisperse in the selected solvent. The effect of different reaction conditions such as temperature, reaction time and varying capping agents on the phase and morphology is studied. Scanning transmission electron microscopy showed that the size of these nanoparticles can be controlled by varying reaction conditions. Both X-ray diffraction and energy dispersive X-ray spectroscopy corroborate the formation of CoFe2O4 spinel structure with cubic symmetry. Due to optimized reaction parameters, each nanoparticle was shown to be a single magnetic domain with diameter ranges from 6 to 16 nm. Finally, the magnetic investigations showed that the obtained nanoparticles are superparamagnetic with a small coercivity value of about 315 Oe and a saturation magnetization of 58 emu/g at room temperature. These results make the cobalt ferrite nanoparticles promising for advanced magnetic nanodevices and biomagnetic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N.A. Frey, S. Peng, K. Cheng, S. Sun, Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38, 2532 (2009). https://doi.org/10.1039/b815548h

    Article  Google Scholar 

  2. A.-H. Lu, E.L. Salabas, F. Schüth, Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222–1244 (2007). https://doi.org/10.1002/anie.200602866

    Article  Google Scholar 

  3. K. Raj, R. Moskowitz, Commercial applications of ferrofluids. J. Magn. Magn. Mater. 85, 233–245 (1990). https://doi.org/10.1016/0304-8853(90)90058-X

    Article  Google Scholar 

  4. H. Anwar, A. Maqsood, Comparison of structural and electrical properties of Co2+ doped Mn–Zn soft nano ferrites prepared via coprecipitation and hydrothermal methods. Mater. Res. Bull. 49, 426–433 (2014). https://doi.org/10.1016/j.materresbull.2013.09.009

    Article  Google Scholar 

  5. X. Huang, Y. Li, Y. Li et al., Synthesis of PtPd bimetal nanocrystals with controllable shape, composition, and their tunable catalytic properties. Nano Lett. 12, 4265–4270 (2012). https://doi.org/10.1021/nl301931m

    Article  Google Scholar 

  6. E.V. Rebrov, P. Gao, T.M.W.G.M. Verhoeven et al., Structural and magnetic properties of sol–gel Co2xNi0.5−x Zn0.5−xFe2O4 thin films. J. Magn. Magn. Mater. 323, 723–729 (2011). https://doi.org/10.1016/j.jmmm.2010.10.031

    Article  Google Scholar 

  7. Z. Lu, P. Gao, R. Ma et al., Structural, magnetic and thermal properties of one-dimensional CoFe2O4 microtubes. J. Alloys Compd. 665, 428–434 (2016). https://doi.org/10.1016/j.jallcom.2015.12.262

    Article  Google Scholar 

  8. P.H. Nam, L.T. Lu, P.H. Linh et al., Polymer-coated cobalt ferrite nanoparticles: synthesis, characterization, and toxicity for hyperthermia applications. New J. Chem. 42, 14530–14541 (2018). https://doi.org/10.1039/C8NJ01701H

    Article  Google Scholar 

  9. L. Kumar, P. Kumar, M. Kar, Cation distribution by Rietveld technique and magnetocrystalline anisotropy of Zn substituted nanocrystalline cobalt ferrite. J. Alloys Compd. 551, 72–81 (2013). https://doi.org/10.1016/j.jallcom.2012.10.009

    Article  Google Scholar 

  10. L. Yao, Y. Xi, G. Xi, Y. Feng, Synthesis of cobalt ferrite with enhanced magnetostriction properties by the sol–gel–hydrothermal route using spent Li-ion battery. J. Alloys Compd. 680, 73–79 (2016). https://doi.org/10.1016/j.jallcom.2016.04.092

    Article  Google Scholar 

  11. Y.C. Wang, J. Ding, J.H. Yin et al., Effects of heat treatment and magnetoannealing on nanocrystalline Co-ferrite powders. J. Appl. Phys. 98, 124306 (2005). https://doi.org/10.1063/1.2148632

    Article  Google Scholar 

  12. L. Yan, Y. Wang, J. Li et al., Nanogrowth twins and abnormal magnetic behavior in CoFe2O4 epitaxial thin films. J. Appl. Phys. 104, 123910 (2008). https://doi.org/10.1063/1.3033371

    Article  Google Scholar 

  13. Q. Song, Z.J. Zhang, Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J. Am. Chem. Soc. 126, 6164–6168 (2004). https://doi.org/10.1021/ja049931r

    Article  Google Scholar 

  14. J. Fu, J. Zhang, Y. Peng et al., Unique magnetic properties and magnetization reversal process of CoFe2O4 nanotubes fabricated by electrospinning. Nanoscale 4, 3932 (2012). https://doi.org/10.1039/c2nr30487b

    Article  Google Scholar 

  15. Z. Mahhouti, M. Ben Ali, H. El Moussaoui et al., Structural and magnetic properties of Co0.7Ni0.3Fe2O4 nanoparticles synthesized by sol–gel method. Appl. Phys. A (2016). https://doi.org/10.1007/s00339-016-0178-5

    Google Scholar 

  16. I. Galarreta, M. Insausti, I. Gil de Muro et al., Exploring reaction conditions to improve the magnetic response of cobalt-doped ferrite nanoparticles. Nanomaterials 8, 63 (2018). https://doi.org/10.3390/nano8020063

    Article  Google Scholar 

  17. S.M. Asgarian, S. Pourmasoud, Z. Kargar et al., Investigation of positron annihilation lifetime and magnetic properties of Co1−xCuxFe2O4 nanoparticles. Mater. Res. Express 6, 015023 (2018). https://doi.org/10.1088/2053-1591/aae55d

    Article  Google Scholar 

  18. A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi et al., New method for synthesis of BaFe12O19/Sm2Ti2O7 and BaFe12O19/Sm2Ti2O7/Ag nano-hybrid and investigation of optical and photocatalytic properties. J. Mater. Sci. 30, 5854–5865 (2019). https://doi.org/10.1007/s10854-019-00883-3

    Google Scholar 

  19. C. Yang, H. Yan, A green and facile approach for synthesis of magnetite nanoparticles with tunable sizes and morphologies. Mater. Lett. 73, 129–132 (2012). https://doi.org/10.1016/j.matlet.2012.01.031

    Article  Google Scholar 

  20. X.-H. Li, C.-L. Xu, X.-H. Han et al., Synthesis and magnetic properties of nearly monodisperse CoFe2O4 nanoparticles through a simple hydrothermal condition. Nanoscale Res. Lett. 5, 1039–1044 (2010). https://doi.org/10.1007/s11671-010-9599-9

    Article  Google Scholar 

  21. M.L. Aparna, A.N. Grace, P. Sathyanarayanan, N.K. Sahu, A comparative study on the supercapacitive behaviour of solvothermally prepared metal ferrite (MFe2O4, M=Fe Co, Ni, Mn, Cu, Zn) nanoassemblies. J. Alloys Compd. 745, 385–395 (2018). https://doi.org/10.1016/j.jallcom.2018.02.127

    Article  Google Scholar 

  22. T. Hyeon, S.S. Lee, J. Park et al., Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 123, 12798–12801 (2001). https://doi.org/10.1021/ja016812s

    Article  Google Scholar 

  23. L.T. Lu, N.T. Dung, L.D. Tung et al., Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions. Nanoscale 7, 19596–19610 (2015). https://doi.org/10.1039/C5NR04266F

    Article  Google Scholar 

  24. I.C. Nlebedim, D.C. Jiles, Dependence of the magnetostrictive properties of cobalt ferrite on the initial powder particle size distribution. J. Appl. Phys. 115, 17A928 (2014). https://doi.org/10.1063/1.4867343

    Article  Google Scholar 

  25. C.P. Gräf, R. Birringer, A. Michels, Synthesis and magnetic properties of cobalt nanocubes. Phys. Rev. B (2006). https://doi.org/10.1103/PhysRevB.73.212401

    Google Scholar 

  26. Z. Wang, X. Liu, M. Lv et al., Preparation of one-dimensional CoFe2O4 nanostructures and their magnetic properties. J. Phys. Chem. C 112, 15171–15175 (2008). https://doi.org/10.1021/jp802614v

    Article  Google Scholar 

  27. Z. Zhang, A.J. Rondinone, J.X. Ma et al., Morphologically templated growth of aligned spinel CoFe2O4 nanorods. Adv. Mater. 17, 1415–1419 (2005). https://doi.org/10.1002/adma.200500009

    Article  Google Scholar 

  28. H. El Moussaoui, T. Mahfoud, M. Ben Ali et al., Experimental studies of neodymium ferrites doped with three different transition metals. Mater. Lett. 171, 142–145 (2016). https://doi.org/10.1016/j.matlet.2016.02.072

    Article  Google Scholar 

  29. S. Hara, J. Aisu, M. Kato et al., One-pot synthesis of monodisperse CoFe2O4@Ag core-shell nanoparticles and their characterization. Nanoscale Res. Lett. (2018). https://doi.org/10.1186/s11671-018-2544-z

    Google Scholar 

  30. L. Pérez-Mirabet, E. Solano, F. Martínez-Julián et al., One-pot synthesis of stable colloidal solutions of MFe2O4 nanoparticles using oleylamine as solvent and stabilizer. Mater. Res. Bull. 48, 966–972 (2013). https://doi.org/10.1016/j.materresbull.2012.11.086

    Article  Google Scholar 

  31. W. Baaziz, B.P. Pichon, S. Fleutot et al., Magnetic Iron oxide nanoparticles: reproducible tuning of the size and nanosized-dependent composition, defects, and spin canting. J. Phys. Chem. C 118, 3795–3810 (2014). https://doi.org/10.1021/jp411481p

    Article  Google Scholar 

  32. C.A. Crouse, A.R. Barron, Reagent control over the size, uniformity, and composition of Co–Fe–O nanoparticles. J. Mater. Chem. 18, 4146 (2008). https://doi.org/10.1039/b806686h

    Article  Google Scholar 

  33. C. Moya, M. del Puerto Morales, X. Batlle, A. Labarta, Tuning the magnetic properties of Co-ferrite nanoparticles through the 1,2-hexadecanediol concentration in the reaction mixture. Phys. Chem. Chem. Phys. 17, 13143–13149 (2015). https://doi.org/10.1039/C5CP01052G

    Article  Google Scholar 

Download references

Acknowledgements

This work has been carried out with the support of the Ministry of Higher Education, Scientific Research, and Professional Training (Enssup) (Morocco) and the National Center for Scientific and Technological Research (CNRST) through the grant Number: PPR15, and by the European H2020-MC-RISE-ENIGMA action (N°778072) and FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Mahhouti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahhouti, Z., El Moussaoui, H., Mahfoud, T. et al. Chemical synthesis and magnetic properties of monodisperse cobalt ferrite nanoparticles. J Mater Sci: Mater Electron 30, 14913–14922 (2019). https://doi.org/10.1007/s10854-019-01863-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01863-3

Navigation