Skip to main content
Log in

Enhanced magnetoelectric effect in heterogeneous multiferroic (x)CuFe2O4 − (1 − x)KNbO3 nanocomposite

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

We report on the novel multiferroic (x)CuFe2O4 − (1 − x)KNbO3 (x = 0.2, 0.3, and 0.4) nanocomposite prepared by conventional solid state route. Structural analysis reveals that a perovskite orthorhombic phase corresponding to KNbO3 and cubic spinel phase corresponding to CuFe2O4 were simultaneously present in each nanocomposite. All the nanocomposites reveal a well-saturated robust magnetization in magnetic analysis. Ferroelectric studies show a proportionate increase in remanent polarization for the concentration of copper ferrite in (x)CuFe2O4 − (1 − x) KNbO3 composite. The magnetoelectric coefficient of 0.3 CuFe2O4–0.7 KNbO3 at 120 Oe is 0.19 mV/cm/Oe, which is one order higher in magnitude than the other two nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123–R152 (2005)

    Article  CAS  Google Scholar 

  2. D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J.F. Marucco, D.S. Fusil, Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys. Rev. B 76, 024116 (2007)

    Article  Google Scholar 

  3. N. Ortega, A. Kumar, J.F. Scott, R.M. Katiyar, Multifunctional magnetoelectric materials for device applications. J. Phys. Condens. Matter. 27, 504002 (2015)

    Article  CAS  Google Scholar 

  4. I.B.S. Banu, A.S. Priya, P. Komalavalli, G. Shanmuganathan, Investigation of structural and magnetic properties of doped BaFeO3–BaTiO3 multiferroic composites. J. Mater. Sci. 26, 98–102 (2015)

    Google Scholar 

  5. D. Varshney, A. Kumar, K. Verma, Effect of A site and B site doping on structural, thermal, and dielectric properties of BiFeO3 ceramics. J. Alloys Compd. 509, 8421–8426 (2011)

    Article  CAS  Google Scholar 

  6. A.S. Priya, I.B.S. Banu, S. Anwar, Investigation of multiferroic properties of doped BiFeO3–BaTiO3 composite ceramics. Matter Lett. 142, 42–44 (2015)

    Article  Google Scholar 

  7. M.K. Attar Kar, R. Fazaeli, F. Manteghi, M. Ghahari, Structural, Optical and isothermic studies of CuFe2O4 and Zn-Doped CuFe2O4Nanoferrite as a magnetic catalyst for photocatalytic degradation of direct red 264 under visible light irradiation. Environ. Prog. Sustain. Energy 38, 13109 (2019)

    Article  Google Scholar 

  8. M. Kanagaraj, P. Sathishkumar, G. KalaiSelvam, I.P. Kokila, S. Arumugam, Structural and magnetic properties of CuFe2O4 as prepared and thermally treated spinel nanoferrites. Indian J. Pure. Appl. Phys. 52, 124–130 (2014)

    CAS  Google Scholar 

  9. N. Chaiyo, A. Ruangphaint, R. Muanghlua, S. Niemcharoen, B. Boonchom, N. Vittayakorn, Synthesis of potassium niobate (KNbO3) nano-powder by a modified solid-state reaction. J. Mater. Sci. 46, 1585–1590 (2011)

    Article  CAS  Google Scholar 

  10. R. Rakhikrishna, J. Isaac, J. Philip, Magneto-electric characterization of x (Na0.5K0.5)0.94Li0.06NbO3- (1–x) NiFe2O4 composite ceramics. J. Electroceram. 35, 120–128 (2015)

    Article  CAS  Google Scholar 

  11. K.K. Patankar, V.L. Mathe, R.P. Mahajan, S.A. Patil, R. Manoharreddy, K.V. Sivakumar, Dielectric behavior and magnetoelectric effect in CuFe2O4-Ba08Pb02TiO3 composites. Mater. Chem. Phys. 72, 23–29 (2001)

    Article  CAS  Google Scholar 

  12. H. Sharma, J. Shah, R.K. Kotnala, N.S. Negi, Enhanced multiferroic and magnetoelectric properties of Ni0.92(Cu0.05Co0.03)Fe2O4/Ba1-xCaxZr0.10Ti0.90O3 lead-free composite films. J. Solid State Sci. 90, 34–40 (2019)

    Article  CAS  Google Scholar 

  13. R.M. Thankachan, B. Raneesh, A. Mayeen, S. Karthika, S. Vivek, S.S. Nair, S. Thomas, N. Kalarikkal, Room temperature magnetoelectric coupling effect in CuFe2O4/BaTiO3 core-shell and mixed nanocomposites. J. Alloys. Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.09.309

    Article  Google Scholar 

  14. A. Sathiya Priya, I.B. Shameem Banu, M. Chavali, Influence of (La, Cu) Doping on the room temperature multiferroic property of BiFe2O4 Ceramics. Arab. J. Sci. Eng. 40, 2079–2084 (2015)

    Article  Google Scholar 

  15. A. Sathiya Priya, I.B. Shameem Banu, M.S Anwar, Investigation of multiferroic properties of doped BiFe2O4- BaTiO3 composite ceramic. Mater. Lett. 142, 42–44 (2015)

  16. P. Komalavali, I.B. Shameem Banu, M. Shahid Anwar, Magnetoelectric coupling of manganese ferrite potassium niobate lead-free Composite ceramics synthesized by solid state reaction method. J. Mater. Sci. Mater. Electron. 30, 3411–3417 (2019)

    Article  Google Scholar 

  17. S. Raja, M. Vadivel, R. Ramesh Babu, L. Sathish Kumar, R. Ramamurthi, Ferromagnetic and dielectric properties of lead free KNbO3-CoFe2O4 Composites. Solid State Sci. 85, 60–69 (2018)

    Article  CAS  Google Scholar 

  18. B.D. Cullity, Elements of X-ray Diffraction, vol. 120 (Addison-Wesley, Boston, 1970)

    Google Scholar 

  19. A.K. Zak, W.H. Abd Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson Hall and size - strain plot methods. Solid State Sci. 13, 251–256 (2011)

    Article  Google Scholar 

  20. T. Tatarchuk, M. Bououdina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, B. Al-Najar, M. Pacia, Structural, optical, and magnetic properties of Zn-doped CoFe2O4nanoparticles. Nanoscale Res. Lett. 12, 141 (2017)

    Article  Google Scholar 

  21. K. Verma, A. Kumar, D. Varshney, Effect of Zn and Mg doping on structural, dielectric and magnetic properties of tetragonal CuFe2O4. J. Appl. Phys. 13, 467–473 (2013)

    Google Scholar 

  22. M. Rajnishkumar, Correlation between lattice strain and magnetic behaviour in non-magnetic Ca substituted nano-crystalline cobalt ferrite. Ceram. Int. 42, 6640–6647 (2016)

    Article  Google Scholar 

  23. W.L. Bragg, The structure of the spinel group of crystals. Nature (London) 95, 561 (1915)

    Article  Google Scholar 

  24. M.A. Gabal, Y.M. Al Angari, Effect of chromium ion substitution on the electromagnetic properties of nickel ferrite. Mater. Chem. Phys. 118, 153 (2009)

    Article  CAS  Google Scholar 

  25. S.S. Priya, I.B. Shameem Banu, M. Chavali, Influence of (La, Cu) doping on the room temperature multiferroic properties of BiFeO3 Ceramics. Arab. J. Sci. Eng. 40, 2079–2084 (2015)

    Article  CAS  Google Scholar 

  26. V.R. Mudinepalli, Enhanced magnetoelectric properties in lead-free Ni0.83Co0.15Cu0.02Fe1.9O4-δ–Na0.5Bi0.5TiO3 composites by spark plasma sintering Scripta. Materialia 82, 9 (2014)

    CAS  Google Scholar 

  27. S. NarendraBabu, K. Srinivas, S.V. Suryanarayana, T. Bhimasankaram, Magnetoelectric properties in NCMF/PZT particulate and bulk laminate composites. J. Phys. D Appl. Phys. 41, 165407 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank WOS-A for providing financial support. The authors thank Dr. M. S. Ramachander Rao, HOD, Department of Physics, IIT Madras for the P-E loop tracer. Authors acknowledge SAIF, IITM for the vibrating sample magnetometer and STIC, Cochin for the TEM and HRTEM.

Funding

This research work is financially supported by the WOS-A under project No: SR/WOS-A/PS-12/2014(G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Komalavalli.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komalavalli, P., Banu, I.B.S., Mamat, M.H. et al. Enhanced magnetoelectric effect in heterogeneous multiferroic (x)CuFe2O4 − (1 − x)KNbO3 nanocomposite. emergent mater. 5, 529–536 (2022). https://doi.org/10.1007/s42247-022-00382-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00382-y

Keywords

Navigation