Skip to main content
Log in

Evidence of room-temperature magnetodielectric effect in brownmillerite KBiFe2O5 through magnetic, complex dielectric, and impedance study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have investigated the structural, magnetic, dielectric, and magnetodielectric properties of brownmillerite-structured polycrystalline KBiFe2O5 (KBFO) sample synthesized using conventional solid-state reaction route. Monoclinic structure with P2/c space group is determined from Rietveld refined X-ray diffraction (XRD) analysis. Temperatures-dependent magnetic and dielectric data show a broad hump around 510 °C, indicating the existence of magnetodielectric effect in KBFO. Room-temperature M–H hysteresis measurement possesses a weak ferromagnetic order (MR = 0.006 emu/g and Hc = 1100 Oe) originating from the canted Fe3+ moments due to antiferromagnetic ordering. This canted Fe3+ moment is also reflected in magnetic field variation of magnetodielectric (MD) measurement at room temperature, in which MD does not trace the original path by reversing the field. The highest magnetodielectric response is obtained to be ~  − 1.8% at room temperature. Modulus and complex impedance spectrum analysis attributes the bulk contribution to the observed room-temperature magnetodielectric at high frequency (> 10 kHz) and extrinsic contribution (< 10 kHz) at low frequency. The presence of temperature-dependent and non-Debye (β < 1) type of relaxation in prepared sample is confirmed from the extracted grain (Rg) and grain boundary (Rgb) contribution at different temperature. The frequency-dependent ac conductivity at different temperature follows Jonscher’s power law. The extracted power exponent “n” is decreased with increase in temperature. This behavior (n \(\propto\)1/T) suggests that the ac conduction mechanism of KBFO follows correlated barrier hoping (CBH) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Vopson, Crit. Rev. Solid State Mater. Sci. 40, 223 (2015)

    Article  CAS  Google Scholar 

  2. J.F. Scott, NPG Asia Mater. 5, 72 (2013)

    Article  Google Scholar 

  3. W. Eerenstein et al., Nature 442, 759 (2006)

    Article  CAS  Google Scholar 

  4. M. Fiebig, Nat. Rev. Mater. 1, 16046 (2016)

    Article  CAS  Google Scholar 

  5. V. Sharma et al., Appl. Phys. Lett. 107, 012901 (2015)

    Article  Google Scholar 

  6. S. Tanasescu et al., Solid State Ionics 134, 265 (2000)

    Article  CAS  Google Scholar 

  7. H. D’Hondt et al., Chem. Mater 20, 7188 (2008)

    Article  Google Scholar 

  8. D.S. Vavilapalli et al., ASC Omega 3, 16643 (2018)

    Article  CAS  Google Scholar 

  9. G. Zhang et al., Sci. Rep. 3, 1265 (2013)

    Article  Google Scholar 

  10. M. Zhang et al., J. Alloys. Compd. 699, 561 (2017)

    Article  CAS  Google Scholar 

  11. M.A. Jalaja et al., Mater. Res. Bull. 88, 9 (2017)

    Article  CAS  Google Scholar 

  12. G. Zhang et al., Adv. Electron. Mater. 1, 1600498 (2017)

    Article  Google Scholar 

  13. M.A. Jalaja et al., Mater. Res. Express 4, 016401 (2017)

    Article  Google Scholar 

  14. B. Mettout et al., Phys. Rev. B 93, 195123 (2016)

    Article  Google Scholar 

  15. H.M. Rietveld, J. Appl. Crystallogr. 22, 65 (1969)

    Article  Google Scholar 

  16. L. Patterson, Phys. Rev. 56, 978 (1939)

    Article  CAS  Google Scholar 

  17. K. Momma et al., J. Appl. Crystallogr. 41, 653 (2008)

    Article  CAS  Google Scholar 

  18. D.L. Wood et al., Phys. Rev. B 5, 3144 (1972)

    Article  Google Scholar 

  19. S.R. Mohapatra et al., J. Appl. Phys. 122, 134103 (2017)

    Article  Google Scholar 

  20. A. Pal et al., J. Appl. Phys. 123, 014102 (2018)

    Article  Google Scholar 

  21. G. Catalan, Appl. Phys. Lett. 88, 102902 (2006)

    Article  Google Scholar 

  22. M. K. Singh, J. Appl. Phys. 111, 014113 (2012)

    Article  Google Scholar 

  23. J. Liu et al., Phys. Rev. B 70, 144106 (2004)

    Article  Google Scholar 

  24. P. Uniyal et al., J. Phys. 21, 405901 (2009)

    CAS  Google Scholar 

  25. P.R. Mandal et al., Phys. B 448, 68 (2014)

    Article  Google Scholar 

  26. S.R. Mohapatra et al., J. Mater. Sci. 3645, 27 (2016)

    Google Scholar 

  27. R. Grhardt, J. Phys. Chem. Solids 55, 1491 (1994)

    Article  Google Scholar 

  28. S.R. Mohapatra et al., Ceram. Int. 42, 12352 (2016)

    Article  CAS  Google Scholar 

  29. A. Shukla et al., J. Phys. Chem. Solids 70, 1401 (2009)

    Article  CAS  Google Scholar 

  30. K.P. Padmasree et al., Solid State Ionics 475, 177 (2006)

    Google Scholar 

  31. C.C. Wang et al., J. Appl. Phys. 113, 094103 (2013)

    Article  Google Scholar 

  32. M.M. Hoque et al., J. Mater. Sci. Technol. 30, 311 (2014)

    Article  CAS  Google Scholar 

  33. K. Jonscher, Nature 673, 267 (2006)

    Google Scholar 

  34. V. Thakur et al., AIP Adv. 5, 087110 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

AKS acknowledges the Board of Research in Nuclear Science (BRNS), Mumbai (Sanction No: 2012/37P/40/BRNS/2145), the UGC- DAE-CSR Mumbai (Sanction No: CRS-M-187, 225), and the Department of Science and Technology (DST), New Delhi (Sanction No: SR/FTP/PS-187/2011), for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrakanta, K., Jena, R., Pal, P. et al. Evidence of room-temperature magnetodielectric effect in brownmillerite KBiFe2O5 through magnetic, complex dielectric, and impedance study. J Mater Sci: Mater Electron 31, 15875–15884 (2020). https://doi.org/10.1007/s10854-020-04149-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04149-1

Navigation