Skip to main content

Advertisement

Log in

Dielectric and multiferroic properties of Na0.5Bi0.5TiO3–CoFe2O4 heterostructure composite ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multiferroic is the future of the next generation memory devices; because of its advantages over the single-phase ferroelectric and ferromagnetic memory systems. In conventional ferroelectric memory system fatigue effect lowers the storage capacity. Other side high magnetic energy is essential for writing the data in ferromagnetic-based memory system. Considering these facets and taking environmental issue in the account we developed lead-free Na0.5Bi0.5TiO3 (NBT)–CoFe2O4 (CFO) multiferroic system via two wet chemical methods. To check the feasibility of the system for device application various physical measurements were carried out. The structural analyses have been done by XRD, FTIR and FESEM which confirm the coexistence of bi-phase in these composites. The dense microstructure was observed for composite sample with highest CFO concentration. In comparison to pure ferrite phase, the composite exhibit low leakage current density, high dielectric constant with low dielectric losses. Interestingly, the CFO affected the phase transition temperature of the NBT as evidenced by the dielectric behaviour as a function of temperature. Also, multiferroic studies were influenced by the content of CFO/NBT phases in composite system. Furthermore, the highest value of ME coupling (~ 64 μV/Oe-cm) was observed for the 50CFO/50NBT composite system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be available on request due to privacy or other restrictions.

References

  1. B.K. Kim, S. Sy, A. Yu, J. Zhang, Handb. Clean Energy Syst. (2015). https://doi.org/10.1002/9781118991978.hces112

    Article  Google Scholar 

  2. X. Hao, J. Adv. Dielectr. 03, 1330001 (2013)

    Google Scholar 

  3. N. Nitta, F. Wu, J.T. Lee, G. Yushin, Mater. Today 18, 252 (2015)

    CAS  Google Scholar 

  4. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, Science 313, 334 (2006)

    CAS  Google Scholar 

  5. S.K. Patel, B. Kuriachen, N. Kumar, R. Nateriya, Ceram. Int. 44, 6426 (2018)

    CAS  Google Scholar 

  6. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.W. Cheong, Nature 429, 392 (2004)

    CAS  Google Scholar 

  7. R. Gao, X. Qin, H. Duan, H. Wu, R. Xu, Q. Zhang, S. Zhang, Z. Li, J. Mater. Sci. Mater. Electron. 31, 13730 (2020)

    CAS  Google Scholar 

  8. J. Chen, Y. Bai, C. Nie, S. Zhao, J. Alloys Compd. 663, 480 (2016)

    CAS  Google Scholar 

  9. C. Ederer, N.A. Spaldin, Phys. Rev. B—Condens. Matter Mater. Phys. 71, 1 (2005)

    Google Scholar 

  10. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    CAS  Google Scholar 

  11. Y. Xu, J.F. Li, J. Ma, Z.Y. Shen, C.W. Nan, Ceram. Int. 38, S425 (2012)

    CAS  Google Scholar 

  12. P. Galizia, C. Baldisserri, E. Mercadelli, C. Capiani, C. Galassi, M. Algueró, Materials (Basel) 13, 2592 (2020)

    CAS  Google Scholar 

  13. P. Galizia, C.E. Ciomaga, L. Mitoseriu, C. Galassi, J. Eur. Ceram. Soc. 37, 161 (2017)

    CAS  Google Scholar 

  14. C. Li, R. Xu, R. Gao, Z. Wang, G. Chen, X. Deng, W. Cai, C. Fu, Q. Li, Mater. Chem. Phys. 249, 123144 (2020)

    CAS  Google Scholar 

  15. C.E. Ciomaga, A.M. Neagu, M.V. Pop, M. Airimioaei, S. Tascu, G. Schileo, C. Galassi, L. Mitoseriu, J. Appl. Phys. 113, 074103 (2013)

    Google Scholar 

  16. T.H. O’Dell, The Electrodynamics of Magneto-Electric Media (North-Holland Publishing Company, Amsterdam, 1970)

    Google Scholar 

  17. J.P. Rivera, Ferroelecrrics 161, 165 (1994)

    CAS  Google Scholar 

  18. B.P. Jacob, S. Thankachan, S. Xavier, E.M. Mohammed, J. Alloys Compd. 541, 29 (2012)

    CAS  Google Scholar 

  19. M. Kumar, S. Shankar, O.P. Thakur, A.K. Ghosh, Mater. Lett. 143, 241 (2015)

    CAS  Google Scholar 

  20. L. Liu, H. Fan, S. Ke, X. Chen, J. Alloys Compd. 458, 504 (2008)

    CAS  Google Scholar 

  21. C.T. De Leo, G.C. Dannangoda, M.A. Hobosyan, J.T. Held, F.S. Samghabadi, M. Khodadadi, D. Litvinov, K.A. Mkhoyan, K.S. Martirosyan, Ceram. Int. 47, 5415 (2021)

    Google Scholar 

  22. T.B. Wermuth, J. Venturini, W.C. Guaglianoni, A.M. Tonelli, E.A. Chavarriaga, S. Arcaro, M.N. Baibich, C.P. Bergmann, Ceram. Int. 47, 4874 (2021)

    CAS  Google Scholar 

  23. F. Guo, Z. Shi, B. Yang, Y. Liu, S. Zhao, Scr. Mater. 184, 52 (2020)

    CAS  Google Scholar 

  24. S. Narendra Babu, L. Malkinski, J. Appl. Phys. 111, 5 (2012)

    Google Scholar 

  25. F. Li, H. Ke, H. Zhang, L. Zhang, J. Zhao, H. Luo, L. Cao, D. Jia, Y. Zhou, Ceram. Int. 46, 1888 (2020)

    CAS  Google Scholar 

  26. S. Thakur, K. Parmar, S. Sharma, N.S. Negi, Integr. Ferroelectr. 203, 37 (2019)

    CAS  Google Scholar 

  27. A.L. Patterson, Phys. Rev. 56, 978 (1939)

    CAS  Google Scholar 

  28. C.S. Devi, G.S. Kumar, G. Prasad, Mater. Sci. Eng. B 178, 283 (2012)

    Google Scholar 

  29. H. Kumar, J.P. Singh, R.C. Srivastava, P. Negi, H.M. Agrawal, K. Asokan, J. Nanosci. 2014, 1 (2014)

    Google Scholar 

  30. J. Liu, M. Li, L. Pei, J. Wang, Z. Hu, X. Wang, X. Zhao, EPL 89, 57004 (2010)

    Google Scholar 

  31. K.W. Wagner, Ann. Phys. 345, 817 (1913)

    Google Scholar 

  32. S.S. Chougule, D.R. Patil, B.K. Chougule, J. Alloys Compd. 452, 205 (2008)

    CAS  Google Scholar 

  33. R.S. Devan, B.K. Chougule, J. Appl. Phys. 101, 014109 (2007)

    Google Scholar 

  34. S. Dagar, A. Hooda, S. Khasa, M. Malik, J. Alloys Compd. 826, 154214 (2020)

    CAS  Google Scholar 

  35. B.K. Barick, K.K. Mishra, A.K. Arora, R.N.P. Choudhary, D.K. Pradhan, J. Phys. D. Appl. Phys. 44, 355402 (2011)

    Google Scholar 

  36. K. Brajesh, M. Abebe, R. Ranjan, Phys. Rev. B 94, 1 (2016)

    Google Scholar 

  37. S. Zeroual, H. Lidjici, W. Chatta, H. Khemakhem, Ceramica 65, 222 (2019)

    CAS  Google Scholar 

  38. A. Gupta, R. Chatterjee, J. Eur. Ceram. Soc. 33, 1017 (2013)

    CAS  Google Scholar 

  39. S.A. Gridnev, A.V. Kalgin, V.A. Chernykh, Integr. Ferroelectr. 109, 70 (2009)

    CAS  Google Scholar 

  40. D. Zhang, J. Cheng, J. Chai, J. Deng, R. Ren, Y. Su, H. Wang, C. Ma, C.S. Lee, W. Zhang, G.P. Zheng, M. Cao, J. Alloys Compd. 740, 1067 (2018)

    CAS  Google Scholar 

  41. M. Etier, C. Schmitz-Antoniak, S. Salamon, H. Trivedi, Y. Gao, A. Nazrabi, J. Landers, D. Gautam, M. Winterer, D. Schmitz, H. Wende, V.V. Shvartsman, D.C. Lupascu, Acta Mater. 90, 1 (2015)

    CAS  Google Scholar 

  42. J. Rani, K.L. Yadav, S. Prakash, Mater. Res. Bull. 60, 367 (2014)

    CAS  Google Scholar 

  43. M. Javad, N. Isfahani, M. Myndyk, M. Eghbali, V. Sepela, J. Subrt, J. Magn. Magn. Mater. 394, 111 (2015)

    Google Scholar 

  44. V.R. Mudinepalli, S.H. Song, B.S. Murty, Scr. Mater. 82, 9 (2014)

    CAS  Google Scholar 

  45. E.C. Stoner, Philos. Trans. R Soc. A Math. Phys. Eng. Sci. 240, 599 (1948)

    Google Scholar 

  46. Y. Wang, Y. Wang, W. Rao, M. Wang, G. Li, Y. Li, J. Gao, W. Zhou, J. Yu, J. Mater. Sci. Mater. Electron. 23, 1064 (2012)

    CAS  Google Scholar 

  47. M. Singh, J. Singh, M. Kumar, S. Kumar, Solid State Sci. 108, 106380 (2020)

    CAS  Google Scholar 

  48. R. Gao, Q. Zhang, Z. Xu, Z. Wang, C. Fu, G. Chen, X. Deng, X. Luo, Y. Qiu, W. Cai, J. Mater. Sci. Mater. Electron. 30, 10256 (2019)

    CAS  Google Scholar 

  49. S.N. Babu, K. Srinivas, T. Bhimasankaram, J. Magn. Magn. Mater. 321, 3764 (2009)

    CAS  Google Scholar 

  50. S. Sharma, H. Sharma, S. Thakur, J. Shah, R.K. Kotnala, N.S. Negi, J. Magn. Magn. Mater. 538, 168243 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

The author Shilpa Thakur, would like to acknowledge the DST, New Delhi, India for financial help (DST/INSPIRE Fellowship/2015/IF150783).

Author information

Authors and Affiliations

Authors

Contributions

ST—conceptualization, data curation, Investigation, Writing—Original Draft; HS: formal analysis, SS: formal analysis, SS: investigation, KLY: resources, investigation, JS: investigation, RKK: investigation, NSN—Supervision, writing-review and editing.

Corresponding author

Correspondence to Shilpa Thakur.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, S., Sharma, H., Sharma, S. et al. Dielectric and multiferroic properties of Na0.5Bi0.5TiO3–CoFe2O4 heterostructure composite ceramic. J Mater Sci: Mater Electron 33, 5831–5845 (2022). https://doi.org/10.1007/s10854-022-07766-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07766-0

Navigation