Skip to main content
Log in

Preparation, characterization and gas sensor performance of nanocrystalline nickel-doped SnO2 films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, the effect of annealing temperature on structural, morphological, optical, and gas-sensing properties of the undoped and Ni-doped SnO2 films was thoroughly investigated by different identification methods. The XRD results indicate a tetragonal structure with (101) preferred orientation in all prepared films and the estimated crystallites size was found in the range of 15–29 nm that verified the formation of nanocrystals in the films. FESEM and AFM images reveal that the surface morphology of films is homogeneous with good adhesion to the substrate. The photoluminescence spectra of the samples show six prominent emission peaks centered at 373, 422, 461, 487, 530, and 600 nm. Additionally, all prepared films were evaluated for gas sensor applications at different operating temperatures and methanol gas concentrations. It was found that annealing temperature effectively influenced the sensor response of Ni-doped SnO2 based on methanol gas sensors. In addition, the best sensing response was observed at an annealing temperature of 500 °C. Finally, the sensor selectivity based on Ni-doped SnO2 annealed at 500 °C was tested for different gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The original data during the current study are available from the corresponding author at a reasonable request.

References

  1. U. Altaf, M.Z. Ansari, S. Rubab, Influence of aluminium doping on structural and optical properties of tin oxide nanoparticles. Mater. Chem. Phys. 297, 127304 (2023)

    Article  CAS  Google Scholar 

  2. F. Hajakbari, Characterization of nanocrystalline nickel oxide thin films prepared at different thermal oxidation temperatures. J. Nanostruct. Chem. 10(1), 97–103 (2020)

    Article  CAS  Google Scholar 

  3. V.S. Shinde, C.P. Sawant, K.H. Kapadnis, Modified Sn-doped LaCrO3 nanostructures: focus on their characterization and applications as ethanol sensor at a lower temperature. J. Nanostruct. Chem. 9(3), 231–245 (2019)

    Article  CAS  Google Scholar 

  4. V. Dhongade, L. Sharma, A. Kahandal, R.C. Aiyer, K. Rajdeo, C. Tagad, Pd doped SnO2 based room temperature operable resistive sensor for the detection of ethanol vapors. Mater. Today: Proc. 46, 6437–6444 (2021)

    Article  CAS  Google Scholar 

  5. D.L. Kamble, N.S. Harale, V.L. Patil, P.S. Patil, L.D. Kadam, Characterization and NO2 gas sensing properties of spray pyrolyzed SnO2 thin films. J. Anal. Appl. Pyrol. 127, 38–46 (2017)

    Article  CAS  Google Scholar 

  6. D.Y. Nadargi, A. Umar, J.D. Nadargi, S.A. Lokare, S. Akbar, I.S. Mulla et al., Gas sensors and factors influencing sensing mechanism with a special focus on MOS sensors. J. Mater. Sci. 58(2), 559–582 (2023)

    Article  CAS  Google Scholar 

  7. D. Meng, S. Zhang, T. Thomas, R. Zhao, Y. Shi, F. Qu et al., Platinum decorated mesoporous titanium nitride for fuel-cell type methanol gas sensor. Sens. Actuators B Chem. 308, 127713 (2020)

    Article  CAS  Google Scholar 

  8. Y. Li, D. Deng, X. Xing, N. Chen, X. Liu, X. Xiao et al., A high performance methanol gas sensor based on palladium-platinum-In2O3 composited nanocrystalline SnO2. Sens. Actuators B Chem. 237, 133–141 (2016)

    Article  CAS  Google Scholar 

  9. Z. Li, J. Yi, Enhanced ethanol sensing of Ni-doped SnO2 hollow spheres synthesized by a one-pot hydrothermal method. Sens. Actuators B Chem. 243, 96–103 (2017)

    Article  CAS  Google Scholar 

  10. Q. Zhou, W. Chen, L. Xu, R. Kumar, Y. Gui, Z. Zhao et al., Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO2 nanomaterials. Ceram. Int. 44(4), 4392–4399 (2018)

    Article  CAS  Google Scholar 

  11. M. Boomashri, P. Perumal, S. Vinoth, M. Shkir, S. AlFaify, Enhancement in room temperature ammonia sensing performance of the La substituted SnO2 (La:SnO2) thin films developed using spray pyrolysis technique. Phys. Scr. 97(5), 055808 (2022)

    Article  Google Scholar 

  12. N.Y. Elamin, T. Indumathi, E. Ranjith Kumar, Evaluation of physicochemical and biological properties of SnO2 and Fe doped SnO2 nanoparticles. Ceram. Int. 49(2), 2388–2393 (2023)

    Article  CAS  Google Scholar 

  13. P. Senthilkumar, S. Raja, R. Ramesh Babu, G. Vasuki, Influence of Ru doping on the structural, morphological, optical, electrical and optoelectronic properties of SnO2 thin films. J. Phys. Chem. Solids 174, 111177 (2023)

    Article  CAS  Google Scholar 

  14. A. Abdel-Galil, N.L. Moussa, I.S. Yahia, Synthesis and optical characterization of nanocrystalline fluorine-doped tin oxide films: conductive window layer for optoelectronic applications. Appl. Phys. A 127(6), 474 (2021)

    Article  CAS  Google Scholar 

  15. E. Ching-Prado, A. Watson, H. Miranda, Optical and electrical properties of fluorine doped tin oxide thin film. J. Mater. Sci.: Mater. Electron. 29(18), 15299–15306 (2018)

    CAS  Google Scholar 

  16. Y. Fan, X. Chen, L. Zhang, J. Wu, L. Wang, S. Yu et al., Electrochemical performance of SnO2/C nanocomposites as anode materials for lithium-ion batteries. Ionics 29(2), 497–504 (2023)

    Article  CAS  Google Scholar 

  17. Y. Ko, Y.R. Kim, H. Jang, C. Lee, M.G. Kang, Y. Jun, Electrodeposition of SnO2 on FTO and its application in planar heterojunction perovskite solar cells as an electron transport layer. Nanoscale Res. Lett. 12(1), 498 (2017)

    Article  Google Scholar 

  18. S.Y. Park, K. Zhu, Advances in SnO2 for efficient and stable n–i–p perovskite solar cells. Adv. Mater. 34(27), 2110438 (2022)

    Article  CAS  Google Scholar 

  19. J.-G. Kang, J.-S. Park, H.-J. Lee, Pt-doped SnO2 thin film based micro gas sensors with high selectivity to toluene and HCHO. Sens. Actuators B Chem. 248, 1011–1016 (2017)

    Article  CAS  Google Scholar 

  20. S. Zhang, P. Zhang, Y. Wang, Y. Ma, J. Zhong, X. Sun, Facile fabrication of a well-ordered porous Cu-doped SnO2 thin film for H2S sensing. ACS Appl. Mater. Interfaces 6(17), 14975–14980 (2014)

    Article  CAS  Google Scholar 

  21. I.M. El-Radaf, T.A. Hameed, G.M. El-komy, T.M. Dahy, Synthesis, structural, linear and nonlinear optical properties of chromium doped SnO2 thin films. Ceram. Int. 45(3), 3072–3080 (2019)

    Article  CAS  Google Scholar 

  22. A.M. El Sayed, S. Taha, M. Shaban, G. Said, Tuning the structural, electrical and optical properties of tin oxide thin films via cobalt doping and annealing. Superlattices Microstruct. 95, 1–13 (2016)

    Article  Google Scholar 

  23. S.K. Jain, N.A. Pandit, M. Fazil, S.A. Ali, J. Ahmed, S.M. Alshehri et al., Chemical fabrication, structural characterization and photocatalytic water splitting application of Sr-doped SnO2 nanoparticles. Nanotechnology 33(35), 355706 (2022)

    Article  Google Scholar 

  24. S.R. Cynthia, R. Sivakumar, C. Sanjeeviraja, C. Gopalakrishnan, K. Jeyadheepan, Room temperature ammonia gas sensing characteristics of copper oxide-tin oxide composite thin films prepared by radio frequency magnetron sputtering technique. J. Mater. Sci.: Mater. Electron. 31(20), 18018–18036 (2020)

    Google Scholar 

  25. P. Vengatesh, T.S. Shyju, Effect of substrate temperature on reactive RF magnetron sputtered SnO2 thin films for photovoltaic applications. Mater. Today: Proc. 47, 1035–1039 (2021)

    Article  CAS  Google Scholar 

  26. J. Mazloom, F.E. Ghodsi, M. Gholami, Fiber-like stripe ATO (SnO2:Sb) nanostructured thin films grown by sol–gel method: optical, topographical and electrical properties. J. Alloy. Compd. 579, 384–393 (2013)

    Article  CAS  Google Scholar 

  27. P. Srinivasa Subbarao, Y. Aparna, K.L. Chitturi, Synthesis and characterization of Ni doped SnO2 nanoparticles by sol-gel method for novel applications. Mater Today: Proc. 26, 1676–1680 (2020)

    Article  CAS  Google Scholar 

  28. A. Salehi, F.E. Ghodsi, J. Mazloom, S. Ebrahimi-Koodehi, Tuning of optical bandgap, conductivity parameters, and PL emissions of SnO2: Ni thin films under Ar, N2, and O2 annealing. Appl. Phys. A 124(10), 661 (2018)

    Article  Google Scholar 

  29. A.K. Mauraya, P. Singh, S. Muthiah, S.S. Kushvaha, S.K. Muthusamy, Effect of post-oxidation processes and thickness of SnO2 films prepared by vacuum evaporation on CO gas sensing characteristics. Ceram. Int. 47(9), 13015–13022 (2021)

    Article  CAS  Google Scholar 

  30. M. Abd El-Aal, T. Seto, Surface-enhanced Raman scattering and catalytic activity studies over nanostructured Au–Pd alloy films prepared by DC magnetron sputtering. Res. Chem. Intermed. 46(7), 3741–3756 (2020)

    Article  CAS  Google Scholar 

  31. B. Ghasemi, F. Hajakbari, A. Hojabri, Structural and optical properties of nanocrystalline MoO3 thin films grown by thermal oxidation of sputtered molybdenum films. Inorg. Nano-Metal Chem. 50(5), 414–422 (2020)

    Article  CAS  Google Scholar 

  32. F. Hajakbari, M. Taheri Afzali, A. Hojabri, Nanocrystalline nickel oxide (NiO) thin films grown on quartz substrates: influence of annealing temperatures. Acta Phys. Pol., A 131(3), 417–419 (2017)

    Article  CAS  Google Scholar 

  33. A. Hojabri, F. Hajakbari, A. Emami Meibodi, M. Moghri Moazzen, Influence of thermal oxidation temperatures on the structural and morphological properties of MoO3 thin films. Acta Phys. Pol., A 123(2), 307–308 (2013)

    Article  CAS  Google Scholar 

  34. B.B. Panda, D. Tripathy, N. Maity, Band gap tailoring and photosensitivity study of Al-doped SnO2 nanocrystallites prepared by sol–gel technique. J. Mater. Sci.: Mater. Electron. 33(32), 24559–24570 (2022)

    CAS  Google Scholar 

  35. S.S. Soumya, R. Vinodkumar, N.V. Unnikrishnan, Conductivity type inversion and optical properties of aluminium doped SnO2 thin films prepared by sol-gel spin coating technique. J. Sol-Gel. Sci. Technol. 99(3), 636–649 (2021)

    Article  CAS  Google Scholar 

  36. S. Dabbabi, M. Souli, T. BenNasr, A. Garcia-Loureiro, N. Kamoun, Effects of Ni and La dopants on the properties of ZnO and SnO2 thin films: microstructural, optical and impedance spectroscopy studies. J. Electron. Mater. 49(2), 1314–1321 (2020)

    Article  CAS  Google Scholar 

  37. F. Hajakbari, S. Rashvand, A. Hojabri, Effect of plasma oxidation parameters on physical properties of nanocrystalline nickel oxide thin films grown by two-step method: DC sputtering and plasma oxidation. J. Theoret. Appl. Phys. 13(4), 365–373 (2019)

    Article  Google Scholar 

  38. S. Asaithambi, P. Sakthivel, M. Karuppaiah, G.U. Sankar, K. Balamurugan, R. Yuvakkumar et al., Investigation of electrochemical properties of various transition metals doped SnO2 spherical nanostructures for supercapacitor applications. J. Energy Stor. 31, 101530 (2020)

    Article  Google Scholar 

  39. P. Sivakumar, H.S. Akkera, T. Ranjeth Kumar Reddy, G. Srinivas Reddy, N. Kambhala, N. Nanda Kumar Reddy, Influence of Ga doping on structural, optical and electrical properties of transparent conducting SnO2 thin films. Optik 226, 165859 (2021)

    Article  CAS  Google Scholar 

  40. S. Jena, R.B. Tokas, S. Thakur, D.V. Udupa, PRISA: a user-friendly software for determining refractive index, extinction co-efficient, dispersion energy, band gap, and thickness of semiconductor and dielectric thin films. Nano Express. 2(1), 010008 (2021)

    Article  Google Scholar 

  41. S. Saadat Niavol, H. Milani Moghaddam, SnO2 nanoparticles/reduced graphene oxide nanocomposite for fast ethanol vapor sensing at a low operating temperature with an excellent long-term stability. J. Mater. Sci.: Mater. Electron. 32(5), 6550–6569 (2021)

    CAS  Google Scholar 

  42. S. Saadat Niavol, H. Milani Moghaddam, A. Bagheri Khatibani, S.F. Hashemi Karouei, F. Hermerschmidt, G. Ligorio et al., Enhancing both methylene blue photocatalytic degradation and ethanol sensing performances of ZnO/rGO nanocomposite through the variation of GO amount. Appl Phys A. 128(8), 733 (2022)

    Article  CAS  Google Scholar 

  43. L. Song, B. Zhao, X. Ju, L. Liu, Y. Gong, W. Chen et al., Comparative study of methanol gas sensing performance for SnO2 nanostructures by changing their morphology. Mater. Sci. Semicond. Process. 111, 104986 (2020)

    Article  CAS  Google Scholar 

  44. Y. Li, D. Deng, N. Chen, X. Xing, X. Xiao, Y. Wang, Enhanced methanol sensing properties of SnO2 microspheres in a composite with Pt nanoparticles. RSC Adv. 6(87), 83870–83879 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their profound gratitude to Mrs. Saadat Niavol for her valuable assistance in sensor analysis.

Funding

This work was carried out with the support of the Islamic Azad University, Karaj branch.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. The processing of data was performed by all authors. All authors discussed the results and approved the final manuscript.

Corresponding author

Correspondence to Fatemeh Hajakbari.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravani, S., Hajakbari, F. & Hojabri, A. Preparation, characterization and gas sensor performance of nanocrystalline nickel-doped SnO2 films. J Mater Sci: Mater Electron 34, 1515 (2023). https://doi.org/10.1007/s10854-023-10939-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10939-0

Navigation