Skip to main content
Log in

Electrochemical performance of SnO2/C nanocomposites as anode materials for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Carbon-coated SnO2 nanocomposites were synthesized successfully by the hydrothermal method and carbonization at 500 °C with glucose and SnCl2·2H2O as precursor materials. The SnO2/C nanocomposites were characterized by various techniques such as X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), Raman spectra, and electrochemical analyses. It was demonstrated that SnO2/C-0, SnO2/C-5, SnO2/C-15, SnO2/C-30, and SnO2/C-50 had initial discharge capacities of 1359.2, 1626.8, 2124.9, 1525.8, and 1349.4 mAhg−1, respectively. In particular, the SnO2/C-15 sample exhibited excellent high reversible lithium storage capacity, good rate capability, and cycling stability. The electrodes show a long cycling ability and high charge/discharge capacity due to the presence of carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Izumi A, Sanada M, Furuichi K et al (2012) Development of high capacity lithium-ion battery applying three-dimensionally patterned electrode [J]. Electrochim Acta 79:218–222

    Article  CAS  Google Scholar 

  2. Huang Y, Zhu M, Huang Y et al (2016) Multifunctional energy storage and conversion devices [J]. Adv Mater 28(38):8344–8364

    Article  CAS  Google Scholar 

  3. Liang J, Zhang L, XiLi D et al (2020) Rational design of hollow tubular SnO2@TiO2 nanocomposites as anode of sodium ion batteries [J]. Electrochim Acta 341:136030

    Article  CAS  Google Scholar 

  4. Park J-S, Oh YJ, Kim JH et al (2020) Porous nanofibers comprised of hollow SnO2 nanoplate building blocks for high-performance lithium ion battery anode [J]. Mater Charact 161:110099

    Article  CAS  Google Scholar 

  5. Chao Z, Leiqiang Z, Ze Z et al (2021) Synthesis of the SnO2@ C@ GN hollow porous microspheres with superior cyclability for Li-ion batteries [J]. Chem Phys Lett 772:138566

    Article  CAS  Google Scholar 

  6. Huang A, Ma Y, Peng J et al (2021) Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology [J]. eScience 1:141–162

  7. Huang C, Liu Y, Zheng R et al (2022) Interlayer gap widened TiS2 for highly efficient sodium-ion storage [J]. J Mater Sci Technol 107:64–69

    Article  Google Scholar 

  8. Shao L, Shu J, Lao M et al (2014) Hydroxylamine hydrochloride: a novel anode material for high capacity lithium-ion batteries [J]. J Power Sources 272:39–44

    Article  CAS  Google Scholar 

  9. Ding R, Tian S, Zhang K et al (2021) Recent advances in cathode prelithiation additives and their use in lithium–ion batteries [J]. J Electroanal Chem 893:115325

    Article  CAS  Google Scholar 

  10. Li X, Zhao R, Fu Y et al (2021) Nitrate additives for lithium batteries: mechanisms, applications, and prospects [J]. eScience 1:108–123

  11. Xia H, Tang Y, Malyi OI et al (2021) Deep cycling for high-capacity Li-ion batteries [J]. Adv Mater 33(10):2004998

    Article  CAS  Google Scholar 

  12. Dai Q, Gu C, Xu Y et al (2021) Self-sacrificing template method to controllable synthesize hollow SnO2@ C nanoboxes for lithium-ion battery anode [J]. J Electroanal Chem 898:115653

    Article  CAS  Google Scholar 

  13. Cho JS, Kang YC (2015) Nanofibers comprising yolk–shell Sn@void@SnO/SnO2 and hollow SnO/SnO2 and SnO2 nanospheres via the Kirkendall diffusion effect and their electrochemical properties [J]. Small 11(36):4673–4681

    Article  CAS  Google Scholar 

  14. Yang Z, Zhao S, Jiang W et al (2015) Carbon-supported SnO2 nanowire arrays with enhanced lithium storage properties [J]. Electrochim Acta 158:321–326

    Article  CAS  Google Scholar 

  15. Ma T, Yu X, Li H et al (2017) High volumetric capacity of hollow structured SnO2@ Si nanospheres for lithium-ion batteries [J]. Nano Lett 17(6):3959–3964

    Article  CAS  Google Scholar 

  16. Wang Y, Guo W, Yang Y et al (2018) Rational design of SnO2@C@MnO2 hierarchical hollow hybrid nanospheres for a Li-ion battery anode with enhanced performances [J]. Electrochim Acta 262:1–8

    Article  CAS  Google Scholar 

  17. Wu C-P, Xie K-X, He J-P et al (2021) SnO2 quantum dots modified N-doped carbon as high-performance anode for lithium ion batteries by enhanced pseudocapacitance [J]. Rare Met 40(1):48–56

    Article  CAS  Google Scholar 

  18. Yu X, Yang S, Zhang B et al (2011) Controlled synthesis of SnO2@ carbon core-shell nanochains as high-performance anodes for lithium-ion batteries [J]. J Mater Chem 21(33):12295–12302

    Article  CAS  Google Scholar 

  19. Lee SH, Huang C, Grant PS (2021) Multi-layered composite electrodes of high power Li4Ti5O12 and high capacity SnO2 for smart lithium ion storage [J]. Energy Storage Materials 38:70–79

    Article  Google Scholar 

  20. Zhu S, Huang A, Wang Q et al (2021) MOF derived double-carbon layers boosted the lithium/sodium storage performance of SnO2 nanoparticles [J]. Nanotechnology 32(30):305403

    Article  CAS  Google Scholar 

  21. Han C, Zhang B, Zhao K et al (2017) Oxalate-assisted formation of uniform carbon-confined SnO2 nanotubes with enhanced lithium storage [J]. Chem Commun 53(69):9542–9545

    Article  CAS  Google Scholar 

  22. Jiang B, He Y, Li B et al (2017) Polymer-templated formation of polydopamine-coated SnO2 nanocrystals: anodes for cyclable lithium-ion batteries [J]. Angew Chem Int Ed 56(7):1869–1872

    Article  CAS  Google Scholar 

  23. Pham-Cong D, Park JS, Kim JH et al (2017) Enhanced cycle stability of polypyrrole-derived nitrogen-doped carbon-coated tin oxide hollow nanofibers for lithium battery anodes [J]. Carbon 111:28–37

    Article  CAS  Google Scholar 

  24. Zhang H, Li L, Li Z et al (2018) Controllable synthesis of SnO2@carbon hollow sphere based on bi-functional metallo-organic molecule for high-performance anode in Li-ion batteries [J]. Appl Surf Sci 442:65–70

    Article  CAS  Google Scholar 

  25. Du X, Yang T, Lin J et al (2016) Microwave-assisted synthesis of SnO2@ polypyrrole nanotubes and their pyrolyzed composite as anode for lithium-ion batteries [J]. ACS Appl Mater Interfaces 8(24):15598–15606

    Article  CAS  Google Scholar 

  26. Huang Y, Pan Q, Wang H et al (2016) Preparation of a Sn@ SnO2@C@MoS2 composite as a high-performance anode material for lithium-ion batteries [J]. J Mater Chem A 4(19):7185–7189

    Article  CAS  Google Scholar 

  27. Li X, Li X, Fan L et al (2017) Rational design of Sn/SnO2/porous carbon nanocomposites as anode materials for sodium-ion batteries [J]. Appl Surf Sci 412:170–176

    Article  CAS  Google Scholar 

  28. Zheng R, Yu H, Zhang X et al (2021) A TiSe2-graphite dual ion battery: fast Na-ion insertion and excellent stability [J]. Angew Chem Int Ed 60(34):18430–18437

    Article  CAS  Google Scholar 

  29. Abouali S, Garakani MA, Kim J-K (2018) Ultrafine SnO2 nanoparticles encapsulated in ordered mesoporous carbon framework for Li-ion battery anodes [J]. Electrochim Acta 284:436–443

    Article  CAS  Google Scholar 

  30. Abe J, Takahashi K, Kawase K et al (2018) Self-standing carbon nanofiber and SnO2 nanorod composite as a high-capacity and high-rate-capability anode for lithium-ion batteries [J]. ACS Appl Nano Mater 1(6):2982–2989

    Article  CAS  Google Scholar 

  31. Hong Y, Mao W, Hu Q et al (2019) Nitrogen-doped carbon coated SnO2 nanoparticles embedded in a hierarchical porous carbon framework for high-performance lithium-ion battery anodes [J]. J Power Sources 428:44–52

    Article  CAS  Google Scholar 

  32. Li Y, Zhao Y, Ma C et al (2016) Novel solvent-thermal preparation of a SnO2 nanoparticles/expanded graphite multiscale composite with extremely enhanced electrical performances for Li-ion batteries [J]. Electrochim Acta 218:191–198

    Article  CAS  Google Scholar 

  33. Li Y, Zhu S, Liu Q et al (2012) Carbon-coated SnO2@ C with hierarchically porous structures and graphite layers inside for a high-performance lithium-ion battery [J]. J Mater Chem 22(6):2766–2773

    Article  CAS  Google Scholar 

  34. Priyadharshini E, Suresh S, Gunasekaran S et al (2019) Investigation on electrochemical performance of SnO2-Carbon nanocomposite as better anode material for lithium ion battery [J]. Physica B 569:8–13

    Article  CAS  Google Scholar 

  35. Zhao X, Zhang J, Zhang J et al (2015) Construction of spongy antimony-doped tin oxide/graphene nanocomposites using commercially available products and its excellent electrochemical performance [J]. J Power Sources 294:223–231

    Article  CAS  Google Scholar 

  36. Hu X, Wang G, Wang B et al (2019) Co3Sn2/SnO2 heterostructures building double shell micro-cubes wrapped in three-dimensional graphene matrix as promising anode materials for lithium-ion and sodium-ion batteries [J]. Chem Eng J 355:986–998

    Article  CAS  Google Scholar 

  37. Shiva K, Rajendra H, Subrahmanyam K et al (2012) Improved lithium cyclability and storage in mesoporous SnO2 electronically wired with very low concentrations (≤ 1%) of reduced graphene oxide [J]. Chem Eur J 18(15):4489–94

    Article  CAS  Google Scholar 

  38. Han X, Li R, Qiu S et al (2019) Sonochemistry-enabled uniform coupling of SnO2 nanocrystals with graphene sheets as anode materials for lithium-ion batteries [J]. RSC Adv 9(11):5942–5947

    Article  CAS  Google Scholar 

  39. Tian F, Zhang Y, Liu L et al (2021) Thermally reshaped polyvinylpyrrolidone/SnO2@ p-toluenesulfonic acid-doped polypyrrole nanocables with high capacity and excellent cycle performance as anode for lithium-ion batteries [J]. J Alloys Compd 867:159067

    Article  CAS  Google Scholar 

  40. Tian Q, Chen Y, Zhang F et al (2020) Hierarchical carbon-riveted 2D@ 0D TiO2 nanosheets@ SnO2 nanoparticles composite for a improved lithium-ion battery anode [J]. Appl Surf Sci 511:145625

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Key Research Projects in Gansu Province (No. 17YF1GA020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laixi Zhang.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Chen, X., Zhang, L. et al. Electrochemical performance of SnO2/C nanocomposites as anode materials for lithium-ion batteries. Ionics 29, 497–504 (2023). https://doi.org/10.1007/s11581-022-04806-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04806-x

Keywords

Navigation