Skip to main content
Log in

Synthesis and optical characterization of nanocrystalline fluorine-doped tin oxide films: conductive window layer for optoelectronic applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The spray pyrolysis as a simple and cost-effective thin film deposition technique was used to obtain transparent conductive oxides (TCOs) thin films of SnO2 and F-doped SnO2 on soda-lime glass substrates at 500 °C. The surface morphology and average crystallite size of the deposited TCOs thin films were investigated by the field emission scanning electron microscope and X-ray diffraction technique. The crystalline grains of the as deposited films preferentially oriented along (101) plane according to the tetragonal crystal structure of SnO2. The tetragonal phase of SnO2 for the deposited films has been confirmed from the fundamental peaks of Raman spectrum. The optical constants like optical band gap, refractive index, and absorption coefficient for SnO2 and F-doped SnO2 films have been evaluated on the basis of Swanepoel model depending on the transmission spectra for the deposited films. All TCOs films under study have direct optical band gap its value increased slightly with the F doping level. The figure of merit of the thin films under study was calculated to check the availability of the films as TCOs in thin film solar cell applications. The charge carrier concentration and Hall mobility of the thin films under investigation also have been determined from the Hall measurements. The effect of γ-irradiation with distinct doses on the transmittance, optical band gap, and crystal structure also has been studied for the deposited films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig.10
Fig.11
Fig.12
Fig.13
Fig.14
Fig.15

Similar content being viewed by others

References

  1. T. D. Nguyen, L. P. Yeo, T. C. Kei, D. Mandler, S. Magdassi, Alfred Iing Yoong Tok, Efficient Near Infrared Modulation with High Visible Transparency Using SnO2–WO3 Nanostructure for Advanced Smart Windows. Adv. Optical Mater. 7, 1801389 (2019). https://doi.org/10.1002/adom.201801389

  2. A. Abdel-Galil, Mai S. A. Hussien, I. S. Yahia, Synthesis and optical analysis of nanostructured F-doped ZnO thin films by spray pyrolysis: Transparent electrode for photocatalytic applications. Optical Mater. 114 110894 (2021). https://doi.org/10.1016/j.optmat.2021.110894

  3. F. Medjaldi, A. Bouabellou, Y. Bouachiba, A. Taabouche, K. Bouatia, H. Serrar, Study of TiO2, SnO2 and nanocomposites TiO2:SnO2 thin films prepared by sol-gel method: Successful elaboration of variable–refractive index systems. Mater. Res. Express 7, 016439 (2020). https://doi.org/10.1088/2053-1591/ab6c0c

  4. G. K. Dalapati, A. K. Kushwaha, M. Sharma, V. Suresh, S. Shannigrahi, S. Zhuk, S. Masudy-Panah, Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance. Prog. Mater. Sci. 95, 42–131 (2018). https://doi.org/10.1016/j.pmatsci.2018.02.007

  5. A. Cannavale, U. Ayr, F. Fiorito, F. Martellotta, Smart electrochromic windows to enhance building energy efficiency and visual comfort. Energies 13, 1449 (2020). https://doi.org/10.3390/en13061449

  6. J. Jia, J. Dong, J. Wu, H. Wei, B. Cao, Combustion procedure deposited SnO2 electron transport layers for high efficient perovskite solar cells. J. Alloys Compd. 156032 (2020). https://doi.org/10.1016/j.jallcom.2020.156032

  7. M. Rostami, N. Talebzadeh, P. G. O’Brien, Transparent photonic crystal heat mirrors for solar thermal applications. Energies 13, 1464 (2020). https://doi.org/10.3390/en13061464

  8. Y. Jang, H. Lee, K. Char, Transparent thin film transistors of polycrystalline SnO2−x and epitaxial SnO2−x. AIP Adv. 10, 035011 (2020). https://doi.org/10.1063/1.5143468

    Article  ADS  Google Scholar 

  9. S. Xie, T. Li, Xu. Zijie, Y. Wang, X. Liu, W. Guo, A high-response transparent heater based on a CuS nanosheet film with superior mechanical flexibility and chemical stability. Nanoscale 10(14), 6531–6538 (2018). https://doi.org/10.1039/c7nr09667d

    Article  Google Scholar 

  10. X. Ren, Y. Liu, D. G. Lee, W. B. Kim, G. S. Han, H. S. Jung, Shengzhong (Frank) Liu, Chlorine-modified SnO2 electron transport layer for high-efficiency perovskite solar cells. Info Mat. 2, 401–408 (2020) https://doi.org/10.1002/inf2.12059

  11. Y. Liu, S. Wei, G. Wang, J. Tong, J. Li, D. Pan, Quantum-Sized SnO2 nanoparticles with up-shifted conduction band: a promising electron transportation material for quantum dot light-emitting diodes. Langmuir 36(23), 6605–6609 (2020). https://doi.org/10.1021/acs.langmuir.0c00107

    Article  Google Scholar 

  12. F. Wang, Hu. Kelin, H. Liu, Qi. Zhao, K. Wang, Y. Zhang, Low temperature and fast response hydrogen gas sensor with Pd coated SnO2 nanofiber rods. Int. J. Hydrogen Energy 45(11), 7234–7242 (2020). https://doi.org/10.1016/j.ijhydene.2019.12.152

    Article  Google Scholar 

  13. X. Xue, L. Zhang, X. Geng, Y. Huang, B. Zhang, Y. Zhao, M. Xu, J. Yan, D. Zhang, F. Zhao, Effect of the AlN interlayer on electroluminescent performance of n-SnO2/p-GaN heterojunction light-emitting diodes. Mater. Sci. Semiconduct. Process. 91 (2019) 409–413; https://doi.org/10.1016/j.mssp.2018.12.015

  14. H. K. Hassun, B. H. Hussein, E. M.T. Salman, A. H. Shaban, Photoelectric properties of SnO2: Ag/P–Si heterojunction photodetector. Energy Reports 6, 46–54 (2020). https://doi.org/10.1016/j.egyr.2019.10.017

  15. A. T. Abood, O. A. Abdul Hussein, M. H. AlTimimi, M. Z. Abdullah, H. M. S. Al Aani, W. H. Albanda, Structural and optical properties of nanocrystalline SnO2 thin films growth by electron beam evaporation. AIP Conf. Proceed. 2213(1):020036; https://doi.org/10.1063/5.0000454

  16. L. Yang, E. Randel, G. Vajente, A. Ananyeva, E. Gustafson, A. Markosyan, R. Bassiri, M. Fejer, C. Menoni, Modifications of ion beam sputtered tantala thin films by secondary argon and oxygen bombardment. Appl. Optics 59(5), A150 (2020). https://doi.org/10.1364/AO.59.00A150

  17. A. Rydosz, K. Dyndał, W. Andrysiewicz, D. Grochala, K. Marszałek, GLAD Magnetron sputtered ultra-thin copper oxide films for gas-sensing application. Coatings 10, 378 (2020). https://doi.org/10.3390/coatings10040378

  18. A. Nihal, Abdul Wahhab, Optical properties of SnO2 thin films prepared by pulsed laser deposition technique. J Opt (2020). https://doi.org/10.1007/s12596-020-00587-6

    Article  Google Scholar 

  19. C. Lee, W-Y. Lee, H. Lee, S. Ha, J-H. Bae, In-Man Kang, Hongki Kang, Kwangeun Kim, Jaewon Jang, Sol-Gel Processed Yttrium-Doped SnO2 Thin Film Transistors. Electronics 9 (2020) 254; doi:https://doi.org/10.3390/electronics9020254

  20. T. Liu, L. Xu, X. Wang, Q. Li, Q. Cui, H. Suo, C. Zhao, A simple dip-coating method of SnO2-NiO composite thin film on a ceramic tube substrate for methanol sensing. Crystals 9, 621 (2019). https://doi.org/10.3390/cryst9120621

  21. G. K. Deyu, D. Muñoz-Rojas, L. Rapenne, J-L. Deschanvres, A. Klein, C. Jiménez, D. Bellet, SnO2 films deposited by ultrasonic spray pyrolysis: influence of al incorporation on the properties. Molecules 24, 2797 (2019). https://doi.org/10.3390/molecules24152797

  22. A. Abdel-Galil, Mai S.A. Hussien, I.S. Yahia, Low cost preparation technique for conductive and transparent Sb doped SnO2 nanocrystalline thin films for solar cell applications. Superlatt. Microstruct. 147 106697 (2020). https://doi.org/10.1016/j.spmi.2020.106697

  23. N. Houaidji, M. Ajili, B. Chouial, N. T. Kamoun, First investigation of structural and optoelectronic properties of F and Ni co-doped SnO2 sprayed thin films. Optik 164026 (2019). https://doi.org/10.1016/j.ijleo.2019.164026

  24. R. Mientus, M. Weise, S. Seeger, R. Heller, K. Ellmer, Electrical and optical properties of amorphous SnO2:Ta films, prepared by dc and rf magnetron sputtering: a systematic study of the influence of the type of the reactive gas. Coatings 10, 204 (2020). doi:https://doi.org/10.3390/coatings10030204

  25. N. Haddad, Z. Ben Ayadi, H. Mahdhi, K. Djessas, Influence of fluorine doping on the microstructure, optical and electrical properties of SnO2 nanoparticles. J. Mater Sci: Mater Electron 28, 15457–15465 (2017) https://doi.org/10.1007/s10854-017-7433-1

  26. O. Kendall, P. Wainer, S. Barrow, J. van Embden, E. D. Gaspera, Fluorine-Doped Tin Oxide Colloidal Nanocrystals. Nanomaterials 10, 863 (2020). https://doi.org/10.3390/nano10050863

  27. B. Thangaraju, Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor. Thin Solid Films 402, 71–78 (2002)

    Article  ADS  Google Scholar 

  28. M.-H. Jo, B.-R. Koo, H.-J. Ahn, Accelerating F-doping in transparent conducting F-doped SnO2 films for electrochromic energy storage devices. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.06.293

    Article  Google Scholar 

  29. S.-T. Zhang, J.-L. Rouvière, V. Consonni, H. Roussel, L. Rapenne, E. Pernot, D. Muñoz-Rojas, A. Klein, D. Bellet, High quality epitaxial fluorine-doped SnO2 films by ultrasonic spray pyrolysis: Structural and physical property investigation. Mater. Des. 132, 518–525 (2017). https://doi.org/10.1016/j.matdes.2017.07.037

  30. A. Benhaoua, A. Rahal, B. Benhaoua, M. Jlassi, Effect of fluorine doping on the structural, optical and electrical properties of SnO2 thin films prepared by spray ultrasonic. Superlattices Microstruct. 70, 61–69 (2014) https://doi.org/10.1016/j.spmi.2014.02.005

  31. H. Z. Asl, S. M. Rozati, High‑quality spray‑deposited fluorine‑doped tin oxide: effect of film thickness on structural, morphological, electrical, and optical properties. Appl. Phy. A 125 689 (2019) https://doi.org/10.1007/s00339-019-2943-8

  32. J. Kim, S. Wong, G. Kim, Y-B. Park, J. van Embden, E. D. Gasper, Transparent electrodes based on spray coated fluorine-doped tin oxide with enhanced optical, electrical and mechanical properties. J. Mater. Chem. C 8, 14531–14539 (2020) DOI: https://doi.org/10.1039/d0tc03314f

  33. G. Turgut, E. Sonmez, M. Yılmaz, M. SelimÇӧgenli, M. Yılmaz, The variation of the features of SnO2 and SnO2:F thin films as a function of V dopant, J. Mater. Sci. Mater. Electron. 25, (2014) 2808–2828.

  34. T. Mahalingam, V.S. John, L.S. Hsu, Microstructural analysis of electrodeposited zinc oxide thin films 2007 J. New Mater. Electrochem. Syst. 10, 9–14

  35. M.A. Yildirim, A. Ates, Influence of film thickness and structure on the photoresponse of ZnO films. Opt. Commun. 283, 1370–1377 (2010)

    Article  ADS  Google Scholar 

  36. G. Turgut, E. Sonmez, S. Ayd, R. Dilber, U. Turgut, The effect of Mo and F double doping on structural, morphological, electrical and optical properties of spray deposited SnO2 thin films, Ceram. Int. 40, 12891–12898 (2014)

  37. S.B. Ameur, A. Barhoumi, H. Belhadjltaief, R. Mimouni, B. Duponchel, G. Leroy, M. Amlouk, H. Guermazi, Physical investigations on undoped and fluorine doped SnO2 nanofilms on flexible substrate along with wettability and photocatalytic activity tests. Mater. Sci. Semicond. Process. 61, 17–26 (2017)

    Article  Google Scholar 

  38. Y. Yang, S. Li, F. Liu, N. Zhang, K. Liu, S. Wang, G. Fang, Bidirectional electroluminescence from p-SnO2/i-MgZnO/n-ZnO heterojunction light-emitting diodes. J. Lumin. 186, 223–228 (2017)

    Article  Google Scholar 

  39. A.S. Ahmed, M.M. Shafeeq, M.L. Singla, S. Tabassum, A.H. Naqvi, A. Azam, Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles. J. Lumin. 131, 1–6 (2011)

    Article  Google Scholar 

  40. S. Pal, A. Sarkar, P. Kumar, D. Kanjilal, T. Rakshit, S.K. Ray, D. Jana, Low temperature photoluminescence from disordered granular ZnO. J. Lumin. 169, 326–333 (2016)

    Article  Google Scholar 

  41. P.S. Shewale, K. UngSim, Y.-B. Kim, J.H. Kim, A.V. Moholkar, M.D. Uplane, Structural and photoluminescence characterization of SnO2: F thin films deposited by advanced spray pyrolysis technique at low substrate temperature. J. Lumin. 139, 113–118 (2013)

    Article  Google Scholar 

  42. B. Oryema, E. Jurua, I. G. Madiba, M. Nkosi, J. Sackey, M. Maaza, Effects of low-dose γ-irradiation on the structural, morphological, and optical properties of fluorine-doped tin oxide thin films 2020 Radiat. Phys. Chem. 176 109077https://doi.org/10.1016/j.radphyschem.2020.109077

  43. V. Kumar, K. Singh, A. Kumar, M. Kumar, K. Singh, A. Vij, A. Thakur, Effect of solvent on crystallographic, morphological and optical properties of SnO2 nanoparticles. Mater. Res. Bull. 85, 202–208 (2017)

    Article  Google Scholar 

  44. F. Gao, Y. Li, Y. Zhao, W. Wan, G. Du, X. Ren, H. Zhao, Facile synthesis of flower-like hierarchical architecture of SnO2 nanoarrays. J. Alloys Compd. 703, 354–360 (2017)

    Article  Google Scholar 

  45. L.Z. Liu, X.L. Wu, J.Q. Xu, T.H. Li, J.C. Shen, P.K. Chu, Oxygen-vacancy and depth-dependent violet double-peak photoluminescence from ultrathin cuboid SnO2 nanocrystals. Appl. Phys. Lett. 100, 121903 (2012)

    Article  ADS  Google Scholar 

  46. L.Z. Liu, X.L. Wu, F. Gao, J.C. Shen, T.H. Li, P.K. Chu, Determination of surface oxygen vacancy position in SnO2 nanocrystals by Raman spectroscopy. Solid State Commun. 151, 811–814 (2011)

    Article  ADS  Google Scholar 

  47. A. Kar, S. Kundu, A. Patra, Surface defect-related luminescence properties of SnO2 nanorods and nanoparticles. J. Phys. Chem. C 115, 118–124 (2011)

    Article  Google Scholar 

  48. M. Thirumoorthi, J. Thomas Joseph Prakash, Structural, morphological characteristics and optical properties of Y doped ZnO thin films by sol-gel spin coating method. Superlattices Microstruct. 85, 237–247 (2015) DOI:https://doi.org/10.1016/j.spmi.2015.05.005

  49. J. Tauc, A. Menth, States in the gap. J. Non. Cryst. Solids 8, 569 (1972)

    Article  ADS  Google Scholar 

  50. Aron Walsh, Juarez L. F. Da Silva, Su-Huai Wei, Origins of band-gap renormalization in degenerately doped semiconductors. Phys. Rev. B 78 (2008) 075211; https://doi.org/10.1103/PhysRevB.78.075211

  51. J.C. Manifacier, J. Gasiote, J.P. Fillard, A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. J. Phys. E:Sci. Instrum. 9, 1002 (1976)

    Article  ADS  Google Scholar 

  52. T. Hawkins, Cauchy and the Spectral Theory of Matrices. Historia Mathehatica 2, 1–29 (1975)

    Article  MathSciNet  Google Scholar 

  53. A.L. Cauchy, Memoire sur la Dispersion de la Lumiere (Calve, Prague, 1836).

  54. Ph. Hofmann, K. Horn, A. M. Bradshaw, R. L. Johnson, D. Fuchs, M. Cardona, Dielectric function of cubic and hexagonal CdS in the vacuum ultraviolet region. Phys. Rev. B 47 (1993) 1639; https://doi.org/10.1103/PhysRevB.47.1639

  55. R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instrum. 16, 1214 (1983). https://doi.org/10.1088/0022-3735/16/12/023

    Article  ADS  Google Scholar 

  56. E. Burstein, Anomalous Optical Absorption Limit in InSb. Phys. Rev. 93(3), 632–633 (1954). https://doi.org/10.1103/physrev.93.632

    Article  ADS  Google Scholar 

  57. Ateyyah M. Al-Baradi, M.M. El-Nahass, M.M. AbdEl-Raheem, A.A. Atta, A.M. Hassanien, Effect of gamma irradiation on structural and optical properties of Cd2SnO4 thin films deposited by DC sputtering technique. Rad. Phy. Chem. 103, 227–233 (2014) https://doi.org/10.1016/j.radphyschem.2014.05.055

  58. S.M. Sze, Semiconductor devices: physics and technology. John Wiley & Sons (2008)

  59. N. Najafi, S.M. Rozati , Structural and electrical properties of SnO2:F Thin films prepared by chemical vapor deposition method. Acta Physica Polonica A 131 (2) 22–225. (2020). https://doi.org/10.12693/APhysPolA.131.222

  60. G. Haacke, New figure of merit for transparent conductors. J. App. Phys. 47, 4086–4089 (1976)

    Article  ADS  Google Scholar 

  61. R. Ramarajan, M. Kovendhan, K. Thangaraju, D. Paul Joseph, Substrate Temperature Dependent Physical Properties of Spray Deposited Antimony-Doped SnO2 Thin Films. Thin Solid Films 704 (2020) 137988; https://doi.org/10.1016/j.tsf.2020.137988

  62. R. Ramarajan, M. Kovendhan, K. Thangaraju, D.P. Joseph, Indium-free large area Nb-doped SnO2 thin film as an alternative transparent conducting electrode. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.01.270

    Article  Google Scholar 

  63. O. Malik, F.J. De la Hidalga-Wade, R.R. Amador, Fluorine-doped tin oxide films with a high figure of merit fabricated by spray pyrolysis. J. Mater. Res. 30(13), 2040–2045 (2015). https://doi.org/10.1557/jmr.2015.138

    Article  ADS  Google Scholar 

  64. G. Turgut, Investigation of characteristic properties of Pr-doped SnO2 thin films. Phil. Mag. 95(14), 1607–1625 (2015). https://doi.org/10.1080/14786435.2015.1040479

    Article  ADS  Google Scholar 

  65. Ngoc Minh Nguyen, Manh Quynh Luu, Minh Hieu Nguyen, Duy Thien Nguyen, Van Diep Bui, Thanh Tu Truong, Van Thanh Pham, Thuat Nguyen-Tran, Synthesis of tantalum-doped tin oxide thin films by magnetron sputtering for photovoltaic applications. J. Electro. Mater. 46 (6) (2017); DOI: https://doi.org/10.1007/s11664-017-5296-0

  66. Md. Faruk Hossain, Md. Abdul Hadi Shah, Md. Ariful Islam, Md. Saifur Rahman, Md. Sazzad Hossain, Structural, morphological and opto-electrical properties of transparent conducting SnO2 thin films:influence of Sb doping. Materials Research Innovations; https://doi.org/10.1080/14328917.2020.1801272

  67. S. Palanichamy, J. Raj Mohamed, K. Deva Arun Kumar, P.S. Satheesh Kumar, S. Pandiarajan, L. Amalraj, Physical properties of rare earth metal (Gd3+) doped SnO2 thin films prepared by simplified spray pyrolysis technique using nebulizer. Optik—Int. J. Light Electron Optics 194 162887 (2019) https://doi.org/10.1016/j.ijleo.2019.05.093

  68. N. Houaidji, M. Ajili, B. Chouial, N.T. Kamoun, K. Kamli, A. Khadraoui, B. Zaidi, B. Hadjoudja, A. Chibani, Z. Hadef, Optoelectronic properties of fluorine and cobalt Co-Doped tin oxide thin films deposited by chemical spray pyrolysis. J Nano Res 60(1661–9897), 63–75 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdel-Galil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Galil, A., Moussa, N.L. & Yahia, I.S. Synthesis and optical characterization of nanocrystalline fluorine-doped tin oxide films: conductive window layer for optoelectronic applications. Appl. Phys. A 127, 474 (2021). https://doi.org/10.1007/s00339-021-04632-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04632-4

Keywords

Navigation