Skip to main content
Log in

Enhanced dielectric and optical properties in Zn2+ and Zr4+ co-doping BiFeO3 ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work focuses on a new BiFeO3 (BFO)-based ceramic prepared by co-doping of Zn2+ and Zr4+ at the Fe-site under low concentration (2%). BiFe0.98(Zn1/2Zr1/2)0.02O3 ceramic (BFZZ-02) was synthesized by the solid-state reaction method. X-ray diffraction revealed the good crystalline nature with the formation of impurities (Bi25FeO39 and Bi2Fe4O9). A rhombohedral R3c structure of BFZZ-02 was elucidated using Rietveld refinement. Raman spectroscopy confirmed also the rhombohedrally distorted perovskite structure and displayed the existence of spin-two-phonon interaction at a higher wavenumber range. BFZZ-02 exhibited a significant improvement in dielectric properties compared to pure BFO. A very high dielectric constant value up to approximately 10000 (at 1 kHz) was reached at Neel temperature (TN = 544 K). The room temperature dielectric constant (εr) and loss tangent (tan δ) in BFZZ-02 were ∼734 and ∼0.035, respectively. The weak value in tan δ at room temperature, suggested a decrease in leakage current density compared to BFO owing to the reduction of oxygen vacancies and the formation of Fe2+. The nonexistence of Fe2+ was confirmed by Mossbauer spectroscopy. Eventually, the optical bandgap of BFZZ-02 (Eg ≈ 1.87 eV) was found to be reduced compared to BFO and possible reasons were thus evaluated. Such result suggests a strong absorption of visible light suitable for photocatalytic and solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The available in the article are true and valid which are recognized by the authors.

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature. 442, 759 (2006)

    Article  CAS  Google Scholar 

  2. Y. Wang, H. Jiamian, Y. Lin, C.W. Nan, Npg. Asia Mater. 2, 61 (2010)

    Article  Google Scholar 

  3. S. Das, S. Rana, S.M. Mursalin, P. Rana, A. Sen, Sens. Actuat B-Chem. 218, 122 (2015)

    Article  CAS  Google Scholar 

  4. W. Mao, Q. Yao, N. Liu, H. Shu, J. Zhu, Y. Pu, X. Li, Appl. Phys. A-Mater. 127, 508–501 (2021)

    Article  CAS  Google Scholar 

  5. I. Grinberg, D.V. West, M. Torres, G. Gou, D.M. Stein, L. Wu, G. Chen, E.M. Gallo, A.R. Akbashev, P.K. Davies, J.E. Spanier, A.M. Rappe, Nature 503, 509 (2013)

    Article  CAS  Google Scholar 

  6. H. Maleki, Adv. Powder Technol. 30(11), 2832 (2019)

    Article  CAS  Google Scholar 

  7. A. Haruna, I. Abdulkadir, S.O. Idris, Heliyon. 6, e03237–e03231 (2020)

    Article  CAS  Google Scholar 

  8. L. Zhang, X. Li, J. Chen, D. Jin, J. Cheng, Ceram. Int. 48(11), 15908 (2022)

    Article  CAS  Google Scholar 

  9. M. Arora, S. Chauhan, P.C. Sati, M. Kumar, J. Supercond. Nov. Magn. 27(8), 1867 (2014)

    Article  CAS  Google Scholar 

  10. P.C. Sati, M. Arora, S. Chauhan, S. Chhoker, M. Kumar, J. Appl. Phys. 112, 094102–094101 (2012)

    Article  Google Scholar 

  11. W.-B. Taazayet, I.M. Zouari, P. Gemeiner, B. Dkhil, N.T. Mliki, Phys. Status Solidi A 16(7), 2200081 (2022)

    Google Scholar 

  12. P. Fischer, M. Polomska, I. Sosnowska, M. Szimansky, J. Phys. C: Solid State Phys. 13, 1931 (1980)

    Article  CAS  Google Scholar 

  13. C. Michel, J.-M. Moreau, G.D. Achenbach, R. Gerson, W.J. James, Solid State Commun. 7, 701 (1969)

    Article  CAS  Google Scholar 

  14. W. Kaczmarek, Z. Pajak, M. Potomska, Solid State Commun. 17, 807 (1975)

    Article  CAS  Google Scholar 

  15. N.M. Murari, R. Thomas, A. Winterman, R.E. Melgarejo, R.S. Katiyar, J. Appl. Phys. 105, 084110–084111 (2009)

    Article  Google Scholar 

  16. G. Khasskhoussi, Z. Abdelkafi, H. Khelifi, N. Abdelmoula, D. Mezzane, H. Khemakhem, J. Alloy Compd. 701, 43 (2017)

    Article  CAS  Google Scholar 

  17. I. Kallel, H. Khemakhem, Z. Sassi, N. Abdelmoula, E.-K. Hlil, N. Randrianantoandro, J. Phys. D: Appl. Phys. 55(6), 065303–065301 (2022)

    Article  CAS  Google Scholar 

  18. X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903–062901 (2005)

    Article  Google Scholar 

  19. J. Wu, J. Wang, D. Xiao, J. Zhu, J. Appl. Phys. 109, 124118–124111 (2011)

    Article  Google Scholar 

  20. D. Do, M.H. Lee, J.S. Park, D.J. Kim, J.S. Kim, T.K. Song, M.H. Kim, S.W. Kim, W.J. Kim, S.S. Kim, Y.S. Sung, S. Baik, Ferroelectr. 454, 57 (2013)

    Article  CAS  Google Scholar 

  21. J. Xie, C. Feng, X. Pan, Y. Liu, Ceram. Int. 40(1), 703 (2014)

    Article  CAS  Google Scholar 

  22. M. Kumar, K.L. Yadav, J. Appl. Phys. 100, 074111–074111 (2006)

    Article  Google Scholar 

  23. S. Mukherjee, R. Gupta, A. Garg, V. Bansal, S. Bhargava, J. Appl. Phys. 107, 123535–1 (2010)

    Article  Google Scholar 

  24. G.D. Hu, S.H. Fan, C.H. Yang, W.B. Wu, Appl. Phys. Lett. 92, 192905–192901 (2008)

    Article  Google Scholar 

  25. J. Teillet, T. Varret, 1984 Unpublished Mosfit Program Université du Maine, France

  26. R. Chakraborty, S. Mukherjee, S. Mukherjee, J. Aus Ceram. Soc. 53, 57 (2017)

    Article  CAS  Google Scholar 

  27. Y. Sheng, X. Yuan, Q. Xu, J. Supercond. Nov. Magn. 26, 2785 (2013)

    Article  CAS  Google Scholar 

  28. J. Rodriguez-Carvajal, P. Fullprof, Laboratoire Léon Brillouin, CEA-CNRS, 2019 Version February 2019, LLB-LCSIM

  29. H.M. Usama, A. Sharif, M.A. Zubair, M.A. Gafur, S.M. Hoque, J. Appl. Phys. 120, 214106–214101 (2016)

    Article  Google Scholar 

  30. P.W. Anderson, Phys. Rev. 115(1), 2 (1959)

    Article  CAS  Google Scholar 

  31. T. Moriya, Phys. Rev. 120(1), 91 (1960)

    Article  CAS  Google Scholar 

  32. M. Salah, I. Morad, H.E. Ali, M.M. Mostafa, M.M. El-Dzsoky, J. Inorg. Organomet. Polym. Mater. 31, 3700 (2021)

    Article  CAS  Google Scholar 

  33. I.P. Raevski, S.A. Prosandeev, A.S. Bogatin, M.A. Malitskaya, L. Jastrabik, J. Appl. Phys. 93, 4130 (2003)

    Article  CAS  Google Scholar 

  34. E. Markiewicz, B. Hilczer, M. Błaszyk, A. Pietraszko, E. Talik, J. Electroceram. 27, 154 (2011)

    Article  CAS  Google Scholar 

  35. Y.Y. Liu, X.M. Chen, X.Q. Liu, L. Li, Appl. Phys. Lett. 90, 192905–192901 (2007)

    Article  Google Scholar 

  36. Z. Abdelkafi, N. Abdelmoula, H. Khemakhem, O. Bidault, M. Maglione, J. Appl. Phys. 100, 114111–114111 (2006)

    Article  Google Scholar 

  37. L. Ni, X.M. Chen, Appl. Phys. Lett. 91, 122905–122901 (2007)

    Article  Google Scholar 

  38. S. Kumari, N. Ortega, A. Kumar, S.P. Pavunny, J.W. Hubbard, C. Rinaldi, G. Srinivasan, J.F. Scott, R.S. Katiyar, J. Appl. Phys. 117, 114102 (2015)

    Article  Google Scholar 

  39. K. Singh, S.A. Band, W.K. Kinge, Ferroelectr. 306, 179 (2004)

    Article  CAS  Google Scholar 

  40. A. Limpichaipanit, S. Somwan, A. Ngamjarurojana, Ceram. Int. 44, 14797 (2018)

    Article  CAS  Google Scholar 

  41. S. Godara, B. Kumar, Ceram. Int. 41, 6912 (2015)

    Article  CAS  Google Scholar 

  42. S. Chauhan, M. Kumar, S. Chhoker, S.C. Katyal, H. Singh, M. Jewariya, K.L. Yadav, Solid State Commun. 152, 525 (2012)

    Article  CAS  Google Scholar 

  43. S. Bhattacharjee, V. Pandey, R.K. Kotnala, D. Pandey, Appl. Phys. Lett. 94, 012906–012901 (2009)

    Article  Google Scholar 

  44. A.K. Joncher, Dielectric relaxation in solids chelser dielectric, London, (1983)

  45. S. Kumari, N. Ortega, A. Kumar, S.P. Pavunny, J.W. Hubbard, C. Rinaldi, G. Srinivasan, J.F. Scott, R.S. Katiyar, J. Appl. Phys. 117, 114102–114101 (2015)

    Article  Google Scholar 

  46. P.C. Sati, M. Sahni, M. Kumar, M. Arora, P. Negi, M. Tomar, V. Gupta, N. Kumar, Integr. Ferroelectr. 193, 1 (2018)

    Article  Google Scholar 

  47. H. Singh, K.L. Yadav, Ceram. Int. 41, 9285 (2015)

    Article  CAS  Google Scholar 

  48. P.C. Sati, M. Kumar, S. Chhoker, Ceram. Int. 41, 3227 (2015)

    Article  Google Scholar 

  49. S. Chauhan, M. Arora, P.C. Sati, S. Chhoker, S.C. Katyal, M. Kumar, Ceram. Int. 39, 6399 (2013)

    Article  CAS  Google Scholar 

  50. D. Do, J.W. Kim, S.S. Kim, J. Am. Ceram. Soc. 94, 2792 (2011)

    Article  CAS  Google Scholar 

  51. R. Haumont, J. Kreisel, P. Bouvier, F. Hippert, Phys. Rev. B 73, 132101–132101 (2006)

    Article  Google Scholar 

  52. D. Kothari, V.R. Reddy, V.G. Sathe, A. Gupta, A. Banerjee, A.M. Awasthi, J. Magn. Magn. Mater. 320, 548 (2008)

    Article  CAS  Google Scholar 

  53. M. Kumar, P.C. Sati, S. Chhoker, V. Sajal, Ceram. Int. 41, 777 (2015)

    Article  CAS  Google Scholar 

  54. P. Hermet, M. Goffinet, J. Kreisel, P. Ghosez, Phys. Rev. B 75, 220102–220101 (2007)

    Article  Google Scholar 

  55. A. Jaiswal, R. Das, T. Maity, K. Vivekanand, S. Adyanthaya, P. Poddar, J. Phys. Chem. C 114, 12432 (2010)

    Article  CAS  Google Scholar 

  56. M.K. Singh, S. Ryu, H.M. Jang, Phys. Rev. B 72, 132101–132101 (2005)

    Article  Google Scholar 

  57. M. Kumar, M. Arora, S. Chauhan, S. Joshi, J. Alloy Compd. 692, 236 (2017)

    Article  CAS  Google Scholar 

  58. P.R. Vanga, R.V. Mangalaraja, M. Ashok, Mater. Res. Bull. 72, 299 (2015)

    Article  CAS  Google Scholar 

  59. J.F. Ihlefeld, N.J. Podraza, Z.K. Liu, R.C. Rai, X. Xu, T. Heeg, Y.B. Chen, J. Li, R.W. Collins, J.L. Musfeldt, X.Q. Pan, J. Schubert, R. Ramesh, D.G. Schlom, Appl. Phys. Lett. 92, 142908–142901 (2008)

    Article  Google Scholar 

  60. Y. Xu, M. Shen, Mater. Lett. 62, 3600 (2008)

    Article  CAS  Google Scholar 

  61. A. Manzoor, A.M. Afzal, N. Amin, M.I. Arashad, M. Usman, M.N. Rasool, M.F. Khan, Ceram. Int. 42, 11447 (2016)

    Article  CAS  Google Scholar 

  62. M. Hasan, M.A. Basith, M.A. Zubair, M.S. Hossain, R. Mahbub, M.A. Hakim, M.F. Islam, J. Alloy Compd. 687, 701 (2016)

    Article  CAS  Google Scholar 

  63. M. Medarde, J. Mesot, P. Lacorre, S. Rosenkranz, P. Fischer, K. Gobrecht, Phys. Rev. B 52, 9248 (1995)

    Article  CAS  Google Scholar 

  64. P.G. Radaelli, G. Iannone, M. Marezio, H.Y. Hwang, S.-W. Cheong, J.D. Jorgensen, D.N. Argyriou, Phys. Rev. B 56, 8265 (1997)

    Article  CAS  Google Scholar 

  65. Z. Zhang, P. Wu, L. Chen, J.L. Wang, Appl. Phys. Lett. 96, 012905–012901 (2010)

    Article  Google Scholar 

  66. Y. Han, W. Liu, X. Xu, M. Guo, X. Zhang, P. Wu, J. Gao, G. Rao, S. Wang, J. Am. Ceram. Soc. 1 (2016)

  67. X. Chen, S. Shen, L. Guo, S.S. Mao, Chem. Rev. 110, 6503 (2010)

    Article  CAS  Google Scholar 

  68. Z. Li, L. Cheng, S. Zhang, Z. Wang, C. Fu, J. Solid State Chem. 279, 120978–120971 (2019)

    Article  CAS  Google Scholar 

  69. M. Abushad, W. Khan, S. Naseem, S. Husain, M. Nadeem, A. Ansari, Ceram. Int. 45, 7437 (2019)

    Article  CAS  Google Scholar 

  70. I.A. Santos, H.L.C. Grande, V.F. Freitas, S.N. de Medeiros, A. Jr Paesano, L.F. Cótica, E. Radovanovic, J. Non-Cryst Solids. 352, 3721 (2006)

    Article  CAS  Google Scholar 

  71. P. Dash, B.N. Dash, H. Rath, C. Rath, N.C. Mishra, Indian J. Phys. 83, 485 (2009)

    Article  CAS  Google Scholar 

  72. K.S. Nalwa, A. Garg, J. Appl. Phys. 103, 044101–044101 (2008)

    Article  Google Scholar 

  73. J. Li, H. He, F. Lü, Y. Duan, D. Song, Mater. Res. Soc. Sym. Proc. 676, Y7.7.1 (2001)

    Article  Google Scholar 

  74. T.R. Paudel, S.S. Jaswal, E.Y. Tsymbal, Phys. Rev. B 85, 104409–1 (2012)

    Article  Google Scholar 

  75. M.S. Bernardo, T. Jardiel, M. Peiteado, A.C. Caballero, M. Villegas, J. Eur. Ceram. Soc. 31, 3047 (2011)

    Article  CAS  Google Scholar 

  76. J. Prado-Gonjal, D. Avila, M.E. Villafuerte-Castrejon, F. Gonzalez-Garcia, L. Fuentes, R.W. Gomez, J.L. Perez-Mazariego, V. Marquina, E. Moran, Solid State Sci. 13, 2030 (2011)

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial support provided by Laboratory of Multifunctional Materials and Applications (LaMMA), (LR16ES18), Faculty of Sciences of Sfax, University of Sfax, (Tunisia).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the present manuscript. Material synthesis, data collection, and analysis were performed by MB, ZA, NA and HK. NR: contribute to the Mossbauer measurements. The first draft of the manuscript was written by MB with the cooperation of ZA and all other authors commented on the previous versions of the manuscript. All authors read and approved the final draft of the manuscript.

Corresponding author

Correspondence to Z. Abdelkafi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukhari, M., Abdelkafi, Z., Abdelmoula, N. et al. Enhanced dielectric and optical properties in Zn2+ and Zr4+ co-doping BiFeO3 ceramic. J Mater Sci: Mater Electron 34, 1218 (2023). https://doi.org/10.1007/s10854-023-10659-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10659-5

Navigation