Skip to main content
Log in

First-principles Investigations of Structural, Thermodynamic, Optoelectronic and Thermoelectric Properties of Rb2CuMF6 (M = As3+, Bi3+) Eco-friendly Halide Double Perovskites: Materials for Green Energy Applications

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Lead-free halide double perovskites (HDPs) have emerged as aspirant members of the optoelectronic and thermoelectric (TE) materials family due to their non-toxicity, tunable and noticeable performances. Herein, the structural, mechanical, thermodynamic, optoelectronic, and TE properties of novel Rb2CuMF6 (M = As3+, Bi3+) HDPs are comprehensively investigated. This study has been performed using accurate first principle calculations with the Boltzmann transport theory. The evaluated elastic constants ensure their structural and thermal stability in cubic phase and anisotropic with ductile behavior. Using Tran-Balaha modified Becke-Johnson (TB-mBJ-GGA) potential, indirect semiconducting band gaps of 1.43 eV and 1.27 eV are recorded for Rb2CuAsF6, and Rb2CuBiF6, respectively. Correlated analyses of the wavelength-dependent optical properties are conducted. The studied HDPs exhibited different optical absorption abilities in both UV and VIS working regions. Besides, the entire TE properties are addressed for n- and p-type doping in a wide operating temperature range. The p-type doping is found to be effective in enhancing the TE performances of both HDPs. The highest figure of merit (ZT)max = 0.994 is recorded at 300 K for intrinsic Rb2CuMF6 (M = As3+, Bi3+). Accordingly, the favorable combination of the present outcomes makes Rb2CuMF6 (M = As3+, Bi3+) an interesting candidate for widespread optoelectronic and TE applications in a wide working temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. B. Mullan, J. Haqq-Misra, Population growth, energy use, and the implications for the search for extraterrestrial intelligence. Futures 106, 4–17 (2019). https://doi.org/10.1016/j.futures.2018.06.009

    Article  Google Scholar 

  2. W.J. Yin, B. Weng, J. Ge, Q. Sun, Z. Li, Y. Yan, Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ. Sci. 12(2), 442–462 (2019). https://doi.org/10.1039/C8EE01574K

    Article  CAS  Google Scholar 

  3. B. Li, X. Wu, S. Zhang, Z. Li, D. Gao, X. Chen, Z. Zhu, Efficient and stable Cs2AgBiBr 6 double perovskite solar cells through in-situ surface modulation. J. Chem. Eng. 446(3), 137144 (2022). https://doi.org/10.1016/j.cej.2022.137144

    Article  CAS  Google Scholar 

  4. T. Zelai, S.A. Rouf, Q. Mahmood, S. Bouzgarrou, M.A. Amin, A.I. Aljameel, T. Ghrib, H.H. Hegazy, A Mera, First-principles study of lead-free double perovskites ga2pdx6 (x = cl, br, and i) for solar cells and renewable energy. J. Mater. Res. 16, 631–639 (2022). https://doi.org/10.1016/j.jmrt.2021.12.002

    Article  CAS  Google Scholar 

  5. F.A. Najar, S. Abass, K. Sultan, M.A. Kharadi, G.F.A. Malik, R. Samad, Comparative study of optical properties of substitutionally doped la2nimno6 double perovskite ceramic: A potential candidate for solar cells and dielectrics. Phys. B: Condens. Matter. 621, 413311 (2021). https://doi.org/10.1016/j.physb.2021.413311

    Article  CAS  Google Scholar 

  6. P.-K. Kung, M.-H. Li, P.-Y. Lin, J.-Y. Jhang, M. Pantaler, D.C. Lupascu, G. Grancini, P. Chen, Lead-free double perovskites for perovskite solar cells. Solar RRL 4(2), 1900306 (2020). https://doi.org/10.1002/solr.201900306

    Article  CAS  Google Scholar 

  7. S. Yadav, D. Kumar, R.S. Yadav, A.K. Singh, Recent progress on optical properties of double perovskite phosphors. Prog. Solid State Chem, 100391 (2023) https://doi.org/10.1016/j.progsolidstchem.2023.100391

  8. M.H. Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M.H. Hassan, M.B.A. Bashir, M. Mohamad, A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renew. Sustain. Energy Rev. 30, 337–355 (2014). https://doi.org/10.1016/j.rser.2013.10.027

    Article  Google Scholar 

  9. D. Zhao, G. Tan, A review of thermoelectric cooling: materials, modeling and applications. Applied thermal engineering. Appl. Therm. Eng. 66(1–2), 15–24 (2014). https://doi.org/10.1016/j.applthermaleng.2014.01.074

    Article  CAS  Google Scholar 

  10. S.B. Riffat, X. Ma, Thermoelectrics: a review of present and potential applications. Appl. Therm. Eng. 23(8), 913–935 (2003). https://doi.org/10.1016/S1359-4311(03)00012-7

    Article  Google Scholar 

  11. B. Orr, A, Akbarzadeh, M. Mochizuki, R. Singh, A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes. Appl. Therm. Eng. 101, 490–495 (2016). https://doi.org/10.1016/j.applthermaleng.2015.10.081

    Article  Google Scholar 

  12. B.P. Singh, S.K. Goyal, P. Kumar, Solar PV cell materials and technologies: Analyzing the recent developments. Mater. Today: Proc. 43, 2843–2849 (2021). https://doi.org/10.1016/j.matpr.2021.01.003

    Article  CAS  Google Scholar 

  13. J. Cao, F. Yan, Recent progress in tin-based perovskite solar cells. Energy Environ. Sci. 14(3), 1286–1325 (2021). https://doi.org/10.1039/D0EE04007J

    Article  CAS  Google Scholar 

  14. G.H. Kim, D.S. Kim, Development of perovskite solar cells with> 25% conversion efficiency. Joule 5, 1033–1035 (2021). https://doi.org/10.1016/j.joule.2021.04.008

    Article  Google Scholar 

  15. G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Long Range Balanced Electron-and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 342, 344 (2013). https://doi.org/10.1126/science.1243167

    Article  CAS  PubMed  Google Scholar 

  16. J. Seo, J.H. Noh, S.I. Seok, Rational Strategies for Efficient Perovskite Solar Cells. Acc. Chem. Res. 49, 562–572 (2016). https://doi.org/10.1021/acs.accounts.5b00444

    Article  CAS  PubMed  Google Scholar 

  17. G.E. Eperon et al., (2016) Perovskite-perovskite tandem photovoltaics with optimized bandgaps. Science 354, 861 (2016). https://doi.org/10.1126/science.aaf9717

    Article  CAS  PubMed  Google Scholar 

  18. G. Schierning, R. Chavez, R. Schmechel, B. Balke, G. Rogl, P. Rogl, Concepts for medium-high to high temperature thermoelectric heat-to-electricity conversion: a review of selected materials and basic considerations of module design. Transl. Mater. Res. 2, 025001/1–26 (2015). https://doi.org/10.1088/2053-1613/2/2/025001

    Article  CAS  Google Scholar 

  19. T. Zhu, C. Fu, H. Xie, Y. Liu, X. Zhao, High efficiency half-heusler thermoelectric materials for energy harvesting. Adv. Energy Mater. 5, 1500588/1–13 (2015). https://doi.org/10.1002/aenm.201500588

    Article  CAS  Google Scholar 

  20. M. Rull-Bravo, A. Moure, J.F. Ferna’ndez, M. Martı ‘n-Gonza’lez, Skutterudites as thermoelectric materials: revisited. RSC Adv. 5, 41653–41667 (2015). https://doi.org/10.1039/C5RA03942H

    Article  CAS  Google Scholar 

  21. M. Christensen, S. Johnsen, B.B. Iversen, Thermoelectric clathrates of type I. Dalton Trans 39, 978–992 (2010). https://doi.org/10.1039/B916400F

    Article  CAS  PubMed  Google Scholar 

  22. T. Takabatake, K. Suekuni, T. Nakayama, E. Kaneshita, Phonon-glass electron-crystal thermoelectric clathrates: experiments and theory. Rev. Mod. Phys. 86, 669–716 (2014). https://doi.org/10.1103/RevModPhys.86.669

    Article  CAS  Google Scholar 

  23. P. Liu, X. Yang, Y. Chen, H. Xiang, W. Wang, R. Ran, W. Zhou, Z. Shao, Promoting the efficiency and stability of cspbibr2-based all-inorganic perovskite solar cells through a functional cu2+ doping strategy. ACS Appl. Mater. Interfaces. 12(21), 23984–23994 (2020). https://doi.org/10.1021/acsami.0c04938

    Article  CAS  PubMed  Google Scholar 

  24. P. Liu, W. Wang, S. Liu, H. Yang, Z. Shao, Fundamental understanding of photocurrent hysteresis in perovskite solar cells. Adv. Energy Mater. 9(13), 1803017 (2019). https://doi.org/10.1002/aenm.201803017

    Article  CAS  Google Scholar 

  25. K. Qin, B. Dong, S. Wang, Improving the stability of metal halide perovskite solar cells from material to structure. J. Energy Chem. 33, 90–99 (2019). https://doi.org/10.1016/j.jechem.2018.08.004

    Article  Google Scholar 

  26. G. King, P.M. Woodward, Cation ordering in perovskitesJ. Mater. Chem. 20(28), 5785–5796 (2010). https://doi.org/10.1039/B926757C

    Article  CAS  Google Scholar 

  27. G. Volonakis, M.R. Filip, A.A. Haghighirad, N. Sakai, B. Wenger, H.J. Snaith, F. Giustino, Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals. J. Phys. Chem. Lett. 7(7), 1254–1259 (2016). https://doi.org/10.1021/acs.jpclett.6b00376

    Article  CAS  PubMed  Google Scholar 

  28. E.T. McClure, M.R. Ball, W. Windl, P.M. Woodward, Cs2AgBiX6 (X = Br, Cl): New Visible Light Absorbing, Lead-Free Halide Perovskite Semiconductors. Chem. Mater. 28(5), 1348–1354 (2016). https://doi.org/10.1021/acs.chemmater.5b04231

    Article  CAS  Google Scholar 

  29. S.A. Dar, B. Want, Direct band gap double perovskite halide Cs2ScInCl6 for optoelectronic applications—a first principle study, Comput Condens Matter 33 (2022), https://doi.org/10.1016/j.cocom.2022.e00736

  30. X.G. Zhao, D. Yang, J.C. Ren, Y. Sun, Z. Xiao, L. Zhang, Rational design of halide double perovskites for optoelectronic applications. Joule 2(9), 1662–1673 (2018). https://doi.org/10.1016/j.joule.2018.06.017

    Article  CAS  Google Scholar 

  31. L. Chu, W. Ahmad, W. Liu, J. Yang, R. Zhang, Y. Sun, J. Yang, X.A. Li, Lead-free halide double perovskite materials: a new superstar toward green and stable optoelectronic applications. Nano-Micro Lett. 11, 1–18 (2019). https://doi.org/10.1007/s40820-019-0244-6

    Article  Google Scholar 

  32. A. Bibi, I. Lee, Y. Nah, O. Allam, H. Kim, L.N. Quan, J. Tang, A. Walsh, S.S. Jang, E.H. Sargent, D.H. Kim, Lead-free halide double perovskites: toward stable and sustainable optoelectronic devices. Mater. Today 49, 123–144 (2021). https://doi.org/10.1016/j.mattod.2020.11.026

    Article  CAS  Google Scholar 

  33. X. Xu, Y. Zhong, Z. Shao, Double perovskites in catalysis, electrocatalysis, and photo (electro) catalysis. Trends Chem 1(4), 410–424 (2019). https://doi.org/10.1016/j.trechm.2019.05.006

    Article  CAS  Google Scholar 

  34. Z. Zhang, Y. Liang, H. Huang, X. Liu, Q. Li, L. Chen, D. Xu, Stable and highly effcient photocatalysis with lead-free double-perovskite of Cs2AgBiBr 6. Angew Chemie Int Ed. 58(22), 7263–7267 (2019). https://doi.org/10.1002/anie.201900658

    Article  CAS  Google Scholar 

  35. B. Cai, X. Chen, M. Xie, S. Zhang, X. Liu, J. Yang, W. Zhou, S. Guo, H. Zeng, A class of Pb-free double perovskite halide semiconductors with intrinsic ferromagnetism, large spin splitting and high Curie temperature. Mater Horizons 5(5), 961–968 (2018). https://doi.org/10.1039/C8MH00590G

    Article  CAS  Google Scholar 

  36. S. Khawar, M.Q. Afzal, M. Husain, N. Sfina, H. Albalawi, M.A. Naeem, N. Rahman, M. Amami, R. Khan, M. Sohail, A. Khan, First-principles calculations to investigate structural, electronic, optical, and magnetic properties of a scintillating double perovskite halide (Cs2LiCeCl6). J. Mater. Res. Technol. 21, 4790–4798 (2022). https://doi.org/10.1016/j.jmrt.2022.11.088

    Article  CAS  Google Scholar 

  37. K. Radja, B.L. Farah, A. Ibrahim, D. Lamia, I. Fatima, B. Nabil, A. Mohamed, Y. Al-Douri, A.F. Abd El-Rehim, Investigation of structural, magnetoelectronic, elastic, mechanical and thermoelectric properties of novel lead-free halide double perovskite Cs2AgFeCl6: first-principles calcuations. J Phys Chem Solids 167, 110795 (2022). https://doi.org/10.1016/j.jpcs.2022.110795

    Article  CAS  Google Scholar 

  38. A.J. Kale, R. Chaurasiya, A. Dixit, Lead-free Cs2BB’X6 (B: Ag/Au/Cu, B′: Bi/Sb/Tl, and X: Br/Cl/I) double perovskites and their potential in energy conversion applications. ACS Appl. Energy Mater. 5(9), 10427–10445 (2022). https://doi.org/10.1021/acsaem.2c00672

    Article  CAS  Google Scholar 

  39. N.A. Noor, M.W. Iqbal, T. Zelai, A. Mahmood, H.M. Shaikh, S.M. Ramay, W. Al-Masry, Analysis of direct band gap A2ScInI6 (A= Rb, Cs) double perovskite halides using DFT approach for renewable energy devices. J. Mater. Res. Technol. 13, 2491–2500 (2021). https://doi.org/10.1016/j.jmrt.2021.05.080

    Article  CAS  Google Scholar 

  40. F. Aslam, H. Ullah, M. Hassan, Theoretical investigation of Cs2InBiX6 (X= Cl, Br, I) double perovskite halides using frst-principle calculations. Mater. Sci. Eng. B 274, 115456 (2021). https://doi.org/10.1016/j.mseb.2021.115456

    Article  CAS  Google Scholar 

  41. M. Shafiq, G. Murtaza, M. Qasim Shah, H.H. Raza, A. Ayyaz, Structural, elastic, electronic, optical and thermoelectric properties of metal based ternary chalcopyrite semiconductor for photovoltaic application: First-principles studies. Optik 295, 171502 (2023). https://doi.org/10.1016/j.ijleo.2023.171502

    Article  CAS  Google Scholar 

  42. Shafiq, Maleeha, Muhammad Qasim Shah, G. Murtaza, Ahmad Ayyaz, Ahmad Usman, and Muhammad Umer. Ab Initio Study of Lead-Free Double Halide Perovskite X2GeSnCl6 (X= Na, K) Compounds for Energy Conversion System. Arabian Journal for Science and Engineering: 1–14 (2024) https://doi.org/10.1007/s13369-024-08751-x

  43. A.H. Slavney, T. Hu, A.M. Lindenberg, H.I. Karunadasa, A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. J. Am. Chem. Soc. 138, 2138–2141 (2016). https://doi.org/10.1021/jacs.5b13294

    Article  CAS  PubMed  Google Scholar 

  44. M.R. Filip, S. Hillman, A.A. Haghighirad, H.J. Snaith, F. Giustino, Band Gaps of the Lead-Free Halide Double Perovskites Cs2BiAgCl6 and Cs2BiAgBr 6 from Theory and Experiment. J. Phys. Chem. Lett. 7, 2579–2585 (2016). https://doi.org/10.1021/acs.jpclett.6b01041

    Article  CAS  PubMed  Google Scholar 

  45. A. Kaltzoglou, M. Antoniadou, A.G. Kontos, C.C. Stoumpos, D. Perganti, E. Siranidi, V. Raptis, K. Trohidou, V. Psycharis, M.G. Kanatzidis, P. Falaras, Optical-Vibrational Properties of the Cs2SnX6 (X = Cl, Br, I) Defect Perovskites and Hole-Transport Efficiency in Dye-Sensitized Solar Cells. J. Phys. Chem. C. 120, 11777–11785 (2016). https://doi.org/10.1021/acs.jpcc.6b02175

    Article  CAS  Google Scholar 

  46. W. Shi, T. Cai, Z. Wang, O. Chen, The effects of monovalent metal cations on the crystal and electronic structures of Cs2MBiCl6 (M= Ag, Cu, Na, K, Rb, and Cs) perovskites. J. Chem. Phys. 153, 141101 (2020). https://doi.org/10.1063/5.0021238

    Article  CAS  PubMed  Google Scholar 

  47. S. Zhao, K. Yamamoto, S. Iikubo, S. Hayase, T. Ma, First-principles study of electronic and optical properties of lead-free double perovskites Cs2NaBX6 (B= Sb, Bi; X= Cl, Br, I). J. Phys. Chem. Solid. 117, 117–121 (2018). https://doi.org/10.1016/j.jpcs.2018.02.032

    Article  CAS  Google Scholar 

  48. W. Zhou, P. Han, X. Zhang, D. Zheng, S. Yang, Y. Yang, C. Luo, B. Yang, F. Hong, D. Wei, Lead-free small-bandgap Cs2CuSbCl6 double perovskite nanocrystals. J. Phys. Chem. Lett. 11, 6463–6467 (2020). https://doi.org/10.1021/acs.jpclett.0c01968

    Article  CAS  PubMed  Google Scholar 

  49. X.-G. Zhao, J.-H. Yang, Y. Fu, D. Yang, Q. Xu, L. Yu, S.-H. Wei, L. Zhang, Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 139, 2630–2638 (2017). https://doi.org/10.1021/jacs.6b09645

    Article  CAS  PubMed  Google Scholar 

  50. H.-J. Feng, W. Deng, K. Yang, J. Huang, X.C. Zeng, Double perovskite Cs2BBiX6 (B= Ag, Cu; X= Br, Cl)/TiO2 heterojunction: an effcient Pb-free perovskite interface for charge extraction. J. Phys. Chem. C. 121, 4471–4480 (2017). https://doi.org/10.1021/acs.jpcc.7b00138

    Article  CAS  Google Scholar 

  51. A.M. Jafar, K.A. Khalaph, A.M. Hmood, Lead-free perovskite and double perovskite solar cells, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing 012047 (2020) https://doi.org/10.1088/1757-899X/765/1/012047

  52. X. Chen, C. Wang, Z. Li, Z. Hou, W.-J. Yin, Bayesian optimization based on a unifed fgure of merit for accelerated materials screening: a case study of halide perovskites. Sci. China Mater. 63, 1024–1035 (2020). https://doi.org/10.1007/s40843-019-1255-4

    Article  CAS  Google Scholar 

  53. M. Roknuzzaman, C. Zhang, K.K. Ostrikov, A. Du, H. Wang, L. Wang, T, Tesfamichael, Electronic and optical properties of lead-free hybrid double perovskites for photovoltaic and optoelectronic applications. Sci. Rep. 9, 1–7 (2019). https://doi.org/10.1038/s41598-018-37132-2

    Article  CAS  Google Scholar 

  54. E. Meyer, D. Mutukwa, N. Zingwe, R. Taziwa, Lead-free halide double perovskites: a review of the structural, optical, and stability properties as well as their viability to replace lead halide perovskites. Metals 8, 667 (2018). https://doi.org/10.3390/met8090667

    Article  CAS  Google Scholar 

  55. G. Volonakis, M.R. Filip, A.A. Haghighirad, N. Sakai, B. Wenger, H.J. Snaith, F. Giustino, Lead-free halide double perovskites via heterovalent substitution of noble metals. J. Phys. Chem. Lett. 7, 1254–1259 (2016). https://doi.org/10.1021/acs.jpclett.6b00376

    Article  CAS  PubMed  Google Scholar 

  56. N. Guechi, A. Bouhemadou, S. Bin-Omran, A. Bourzami, L. Louail, Elastic, optoelectronic and thermoelectric properties of the lead-free halide semiconductors Cs2AgBiX6 (X= Cl, Br): ab initio investigation. J. Electron. Mater. 47, 1533–1545 (2018). https://doi.org/10.1007/s11664-017-5962-2

    Article  CAS  Google Scholar 

  57. T. Nakajima, K. Sawada, Discovery of Pb-free perovskite solar cells via highthroughput simulation on the K computer. J. Phys. Chem. Lett. 8(19), 4826–4831 (2017). https://doi.org/10.1021/acs.jpclett.7b02203

    Article  CAS  PubMed  Google Scholar 

  58. S. Al-Qaisi, M. Mushtaq, S. Alomairy, T.V. Vu, H. Rached, B.U. Haq et al., First-principles investigations of Na2CuMCl6 (M= Bi, Sb) double perovskite semiconductors: materials for green technology. Mater. Sci. Semicond. Process. 150, 106947 (2022). https://doi.org/10.1016/j.mssp.2022.106947

    Article  CAS  Google Scholar 

  59. S. Kumari, P.K. Kamlesh, L. Kumari, S. Kumar, S. Kumari, R. Singh et al., Progress in theoretical study of lead-free halide double perovskite Na2AgSbX6 (X= F, Cl, Br, and I) thermoelectric materials. J. Mol. Model. 29(6), 195 (2023). https://doi.org/10.1007/s00894-023-05599-0

    Article  CAS  PubMed  Google Scholar 

  60. M.Q. Shah, M. Shafiq, A. Naeem, G. Murtaza, A. Ayyaz, A. Usman, S.M. Deen, M.A. El-Sheikh, Effect of position occupancy of different elements on the structural stability, optoelectronic, thermoelectric and elastic properties of Cs2CuAsX6 (X: Cl, Br, I) halide double perovskite: DFT analysis. Mater. Sci. Semicond. Process. 174, 108187 (2024). https://doi.org/10.1016/j.mssp.2024.108187

    Article  CAS  Google Scholar 

  61. Ayyaz, A., Murtaza, G., Usman, A., Alkhaldi, H., Shah, M.Q., Ali, S., Sfina, N., Younas, M. and Irfan, M.. Structural, morphological, elastic, optoelectronic and thermoelectric properties of lead-free double perovskite Na2AgBiBr6 for photovoltaic applications: Experimental and DFT insight. Ceramics International. 50 (9) (2024) https://doi.org/10.1016/j.ceramint.2024.02.002

  62. M. Shafiq, M.Q. Shah, G. Murtaza, H.H. Raza, S.M. Ramay, M. Irfan, Pressure induced variations in the band structure, optical and mechanical properties of lead free double halides perovskites K2CuAsX6 (X= Cl, Br): A first-principles calculations. Inorg. Chem. Commun. 156, 111262 (2023). https://doi.org/10.1016/j.inoche.2023.111262

    Article  CAS  Google Scholar 

  63. K. Schwarz, P. Blaha, G.K. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147, 71–76 (2002). https://doi.org/10.1016/S0010-4655(02)00206-0

    Article  Google Scholar 

  64. G.K. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, L. Nordström, Efficient linearization of the augmented plane-wave method. Phys. Rev. B 64, 195134–195142 (2001). https://doi.org/10.1103/PhysRevB.64.195134

    Article  CAS  Google Scholar 

  65. Blaha, P. Schwarz, K., Madsen, G. K. H., Kvasnicka, D. and Luitz, J.: WIEN2K: An Augmented Plane Wave and Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology, Austria, (2001). https://doi.org/10.1063/1.5143061

  66. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  67. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401–226405 (2009). https://doi.org/10.1103/PhysRevLett.102.226401

    Article  CAS  PubMed  Google Scholar 

  68. F. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944). https://doi.org/10.1073/pnas.30.9.244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Materials Project, Data retrieved from the Materials Project for Rb2CuAsF6 (mp-1113309) from database version v2022.10.28. (2024). https://next-gen.materialsproject.org/materials/mp-1113309?formula=Rb2CuAsF6

  70. Materials Project, Data retrieved from the Materials Project for Rb2CuBiF6 (mp-1113817) from database version v2022.10.28. (2024). https://next-gen.materialsproject.org/materials/mp-1113817?formula=Rb2CuBiF6

  71. C.J. Bartel, C. Sutton, B.R. Goldsmith, R. Ouyang, C.B. Musgrave, L.M. Ghiringhelli, M. Scheffler, New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5, eaav0693 (2019). https://doi.org/10.1126/sciadv.aav0693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. G.K. Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006). https://doi.org/10.1016/j.cpc.2006.03.007

    Article  CAS  Google Scholar 

  73. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A: crystal physics, diffraction, theoretical and general crystallography 32(5), 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  74. G. Han, H.D. Hadi, A. Bruno, S.A. Kulkarni, T.M. Koh, L.H. Wong, C. Soci, N. Mathews, S. Zhang, S.G. Mhaisalkar, Additive selection strategy for high performance perovskite photovoltaics. J. Phys. Chem. C 122, 13884–13893 (2018). https://doi.org/10.1021/acs.jpcc.8b00980

    Article  CAS  Google Scholar 

  75. C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, Z. Guo, Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr B 64, 702–707 (2008). https://doi.org/10.1107/S0108768108032734

    Article  CAS  PubMed  Google Scholar 

  76. M. Jalali. Jamal, S. Asadabadi, I. Ahmad, H.A. Rahnamaye Aliabad, Elastic constants of cubic crystals. Comput. Mater. Sci. 95, 592–599 (2014). https://doi.org/10.1016/j.commatsci.2014.08.027

    Article  CAS  Google Scholar 

  77. R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A. 65, 349 (1952). https://doi.org/10.1088/0370-1298/65/5/307

    Article  Google Scholar 

  78. X.Q. Li, J.J. Zhao, J.C. Xu, Mechanical properties of bcc Fe-Cr alloys by first-principles simulations. Front. Phys. 7, 360–365 (2012). https://doi.org/10.1007/s11467-011-0193-0

    Article  Google Scholar 

  79. S.I. Ranganathan, M. Ostoja-Starzewski, Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504–055507 (2008). https://doi.org/10.1103/PhysRevLett.101.055504

    Article  CAS  PubMed  Google Scholar 

  80. A. Boutramine, S. Al-Qaisi, M.A. Ali et al., A theoretical investigation of the Ba2CePtO6 double perovskite for optoelectronic and thermoelectric applications. Opt. Quant. Electron. 56, 395 (2024). https://doi.org/10.1007/s11082-023-06113-9

    Article  CAS  Google Scholar 

  81. M. Born, On the stability of crystal lattices. I. Math. Proc. Cambridge Philos. Soc. 36, 160 (1940). https://doi.org/10.1017/S0305004100017138

    Article  CAS  Google Scholar 

  82. M.L. Cohen, Calculation of bulk moduli of diamond and zinc-blende solids. Phys. Rev. B 32(12), 7988 (1985). https://doi.org/10.1103/PhysRevB.32.7988

    Article  CAS  Google Scholar 

  83. A. Boutramine, S. Al-Qaisi, S. Samah et al., Optoelectronic and thermoelectric properties of new lead-free K2NaSbZ6 (Z = Br, I) halide double-perovskites for clean energy applications: a DFT study. Opt. Quant. Electron. 56, 417 (2024). https://doi.org/10.1007/s11082-024-06344-4

    Article  CAS  Google Scholar 

  84. S. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Phil. Mag. J. Sci. 45, 823–843 (1954). https://doi.org/10.1080/14786440808520496

    Article  CAS  Google Scholar 

  85. D. Pettifor, Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345–349 (1992). https://doi.org/10.1179/mst.1992.8.4.345

    Article  CAS  Google Scholar 

  86. U. Rani, P.K. Kamlesh, T.K. Joshi, S. Sharma, R. Gupta, S. Al-Qaisi, A.S. Verma, Alkaline earth based antiperovskite AsPX3 (X= Mg, Ca, and Sr) materials for energy conversion efficient and thermoelectric applications. Phys. Scr. 98, 075902 (2023). https://doi.org/10.1088/1402-4896/acd88a

    Article  Google Scholar 

  87. S.A. Dar, R. Sharma, V. Srivastava, U.K. Sakalle, Investigation on the electronic structure, optical, elastic, mechanical, thermodynamic and thermoelectric properties of wide band gap semiconductor double perovskite Ba2InTaO6. RSC Adv. 9, 9522–9532 (2019). https://doi.org/10.1039/C9RA00313D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. E. Schreiber, O.L. Anderson, N. Soga, J.F. Bell, Elastic constants and their measurement. J. Appl. Mech. 42, 747–748 (1975). https://doi.org/10.1115/1.3423687

    Article  Google Scholar 

  89. C. Jasiukiewicz, V. Karpus, Debye temperature of cubic crystals. Solid State Commun. 128, 167–169 (2003). https://doi.org/10.1016/j.ssc.2003.08.008

    Article  CAS  Google Scholar 

  90. T.I. Al-Muhimeed, A.I. Aljameel, A. Mera, S. Saad, G. Nazir, H. Albalawi, Q. Mahmood, First principle study of optoelectronic and mechanical properties of lead-free double perovskites Cs2SeX6 (X= Cl, Br, I). J. Taibah Univ. Sci. 16(1), 155–162 (2022). https://doi.org/10.1080/16583655.2022.2035927

    Article  Google Scholar 

  91. G. Giorgi, J.I. Fujisawa, H. Segawa, K. Yamashita, Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: A density functional analysis. J. Phys. Chem. Lett. 4, 4213–4216 (2013). https://doi.org/10.1021/jz4023865

    Article  CAS  PubMed  Google Scholar 

  92. A. Rodina, M. Dietrich, A. Göldner, L. Eckey, A. Hoffmann, A.L. Efros, M. Rosen, B. Meyer, Free excitons in wurtzite GaN. Phys. Rev. B 64(11), 115204 (2001). https://doi.org/10.1103/PhysRevB.64.115204

    Article  CAS  Google Scholar 

  93. Wei C, Chen X, Li D, Su H, He H and Dai J-F 2016 Bound exciton and free exciton states in GaSe thin slab Sci. Rep. 33890 https://doi.org/10.1038/srep33890

  94. M. Hilal, B. Rashid, S.H. Khan, A. Khan, Investigation of electro-optical properties of InSb under the influence of spin-orbit interaction at room temperature. Mater. Chem. Phys. 184, 41–48 (2016). https://doi.org/10.1016/j.matchemphys.2016.09.009

    Article  CAS  Google Scholar 

  95. E.A. Albanesi, E.P. Blanca, A.G. Petukhov, Calculated optical spectra of IV–VI semiconductors PbS, PbSe and PbTe. Comput. Mater. Sci. 32, 85–95 (2005). https://doi.org/10.1016/j.commatsci.2004.07.001

    Article  CAS  Google Scholar 

  96. V.B. Bobrov, S.A. Trigger, G.J.F. Van Heijst, P.P.J.M. Schram, Kramers-Kronig relations for the dielectric function and the static conductivity of Coulomb systems. EPL. 90, 10003–10007 (2010). https://doi.org/10.1209/0295-5075/90/10003

    Article  CAS  Google Scholar 

  97. M. Gajdoš, K. Hummer, G. Kresse, G.J. Furthmüller, F. Bechstedt, Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 045112–045120 (2006). https://doi.org/10.1103/PhysRevB.73.045112

    Article  CAS  Google Scholar 

  98. Y.P. Yu, M. Cardona, Fundamental of Semiconductor Physics and Materials Properties, Springer. Berlin (1999). https://doi.org/10.1007/978-3-642-00710-1

    Article  Google Scholar 

  99. M. Dreesel, M.G. Gruner, Electrodynamics of Solids: Optical Properties of Electrons in Matter. Cambridge University Press, (2002). https://doi.org/10.1017/CBO9780511606168

  100. D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2097 (1962). https://doi.org/10.1103/PhysRev.128.2093

    Article  CAS  Google Scholar 

  101. Ziman, J.M: Electrons and Phonons: The Theory of Transport Phenomena in Solids. Oxford university press, London (2001) https://doi.org/10.1093/acprof:oso/9780198507796.001.0001

  102. P.B. Allen, Boltzmann theory and resistivity of metals, in Quantum Theory of Real Materials. ed. by J.R. Chelikowsky, S.G. Louie (Klüwer, Boston, 1996), pp.219–250

    Chapter  Google Scholar 

  103. Hurd, C. M.: The Hall Effect in Metals and Alloys. Plenum Press, New York-London (1972) https://doi.org/10.1007/978-1-4757-0465-5

  104. A. Sommerfeld, Zur elektronentheorie der metalle auf grund der Fermischen statistik. Z. Phys. 47(1), 1–32 (1928). https://doi.org/10.1007/BF01391052

    Article  CAS  Google Scholar 

  105. G. Kumar, G. Prasad, R. Pohl, Experimental determinations of the Lorenz number. J. Mat. Sci. 28, 4261–4272 (1993). https://doi.org/10.1007/BF01154931

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere appreciation to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R71), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2024/R/1445).

Funding

Princess Nourah bint Abdulrahman University, Project number (PNURSP2024R71). Prince Sattam bin Abdulaziz University project number (PSAU/2024/R/1445).

Author information

Authors and Affiliations

Authors

Contributions

A.B: Conceptualization, Formal analysis, Methodology, Writing – original draft, Writing – review & editing. S.A: Data curation, Writing – review & editing, Visualization, Investigation, Software. S.S: Data curation, Writing – review & editing. A.K.A: Data curation, Writing – review & editing. T.A. A: Data curation, Writing – review & editing. S.B: Data curation, Writing – review & editing. M.E: Writing – review & editing, Methodology. M.F.R: Visualization, Data curation.

Corresponding authors

Correspondence to Abderrazak Boutramine or Samah Al-Qaisi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutramine, A., Al-Qaisi, S., Samah, S. et al. First-principles Investigations of Structural, Thermodynamic, Optoelectronic and Thermoelectric Properties of Rb2CuMF6 (M = As3+, Bi3+) Eco-friendly Halide Double Perovskites: Materials for Green Energy Applications. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03124-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03124-1

Keywords

Navigation