Skip to main content
Log in

Significant improvement in the structural, microstructural, and room-temperature magnetic properties of Fe-doped NiO nanoparticles prepared by the solution combustion method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ni1−xFexO (x = 0, 0.02, 0.04, 0.06, 0.08, and 0.10) nanoparticles were prepared by solution combustion technique. The prepared samples were calcined at 600 °C for 2 h in air. A systematic analysis of structural, microstructural, magnetic, and optical properties has been carried out. Single-phase face-centered cubic structure is established in NiO nanoparticles with Fe doping up to 4% and further increasing the Fe concentration leads to the formation of a secondary phase. A significant reduction in average particle size is observed from 50 to 33 nm for undoped and 6 mol% Fe-doped NiO nanoparticles. The phase purity of the samples was confirmed by X-ray diffraction, fourier transform infrared spectroscopy, and Raman spectroscopy. The surface morphology of samples was examined by using field emission scanning electron microscope and high-resolution transmission electron microscope. The mixed-valence states of Ni (Ni2+/Ni3+) and Fe (Fe2+/Fe3+) were confirmed by X-ray photoelectron spectroscopy. The magnetic properties of prepared samples were carried out in powder as well as in pellet form by vibrating sample magnetometer at room temperature. Significant enhancement in the magnetic parameters is observed in the case of pellet samples due to compaction and densification of powder samples. This significant improvement in magnetic behavior is quite useful for various device applications. The optical absorption spectra of Fe-doped NiO nanoparticles exhibited a blue shift in peaks with increasing Fe content in the NiO host lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

Yes, data are available.

References

  1. S. Motaman, M.N.I. Khan, S. Ghosh, in Proc. 2018 Des. Autom. Test Eur. Conf. Exhib. DATE 2018 (Institute of Electrical and Electronics Engineers Inc., 2018), pp. 125–130

  2. A.N. Andriotis, M. Menon, J. Phys. Condens. Matter 30, 135803 (2018)

    Article  Google Scholar 

  3. S.M. Yakout, J. Supercond. Nov. Magn. 33, 2557 (2020)

    Article  CAS  Google Scholar 

  4. A. Hirohata, K. Yamada, Y. Nakatani, L. Prejbeanu, B. Diény, P. Pirro, B. Hillebrands, J. Magn. Magn. Mater. 509, 166711 (2020)

    Article  CAS  Google Scholar 

  5. D.D. Awschalom, M.E. Flatté, Nat. Phys. 3, 153 (2007)

    Article  CAS  Google Scholar 

  6. V.K. Joshi, Eng. Sci. Technol. Int. J. 19, 1503 (2016)

    Google Scholar 

  7. B. Dieny, I.L. Prejbeanu, K. Garello, P. Gambardella, P. Freitas, R. Lehndorff, W. Raberg, U. Ebels, S.O. Demokritov, J. Akerman, A. Deac, P. Pirro, C. Adelmann, A. Anane, A.V. Chumak, A. Hirohata, S. Mangin, S.O. Valenzuela, M.C. Onbaşlı, M. d’Aquino, G. Prenat, G. Finocchio, L. Lopez-Diaz, R. Chantrell, O. Chubykalo-Fesenko, P. Bortolotti, Nat. Electron. 38(3), 446 (2020)

    Article  Google Scholar 

  8. A. Samanta, M.N. Goswami, P.K. Mahapatra, J. Alloys Compd. 730, 399 (2018)

    Article  CAS  Google Scholar 

  9. L. Chouhan, G. Bouzerar, S.K. Srivastava, J. Mater. Sci. Mater. Electron. 32, 6389–6397 (2021)

    Article  CAS  Google Scholar 

  10. M. ur Rahman, M. Saqib, K. Althubeiti, K.M. Abualnaja, S.U. Zaman, N. Rahman, R. Khan, J. Mater. Sci. Mater. Electron. 32, 28718 (2021)

    Article  Google Scholar 

  11. N. Ahmad, S. Khan, M.M.N. Ansari, Ceram. Int. 44, 15972 (2018)

    Article  CAS  Google Scholar 

  12. L. Chouhan, G. Bouzerar, S.K. Srivastava, J. Mater. Sci. Mater. Electron. 32, 11193 (2021)

    Article  CAS  Google Scholar 

  13. Y. Slimani, E. Hannachi, A. Ekicibil, M. A. Almessiere, F. Ben Azzouz, J. Alloys Compd. 781, 664–673 (2019)

    Article  CAS  Google Scholar 

  14. S. P. Raja, C. Venkateswaran, J. Nanosci. Nanotechnol. 11, 2747–2751 (2011)

    Article  CAS  Google Scholar 

  15. K.R. Sharma, N.S. Negi, J. Supercond. Nov. Magn. 34, 633 (2021)

    Article  CAS  Google Scholar 

  16. S. Allahyar, M. Taheri, A. Abharya, K. Mohammadi, J. Mater. Sci. Mater. Electron. 28, 2846 (2017)

    Article  CAS  Google Scholar 

  17. M. Bonomo, J Nanopart Res 20, 222 (2018)

    Article  Google Scholar 

  18. A.S. Mukasyan, P. Dinka, Int. J. Self-Propagating High-Temp. Synth. 16, 23 (2007)

    Article  CAS  Google Scholar 

  19. M. Bonomo, Synthesis and characterization of NiO nanostructures: a review. J. Nanopart. Res. (2018). https://doi.org/10.1007/s11051-018-4327-y

    Article  Google Scholar 

  20. N. Baig, I. Kammakakam, W. Falath, I. Kammakakam, Mater. Adv. 2, 1821 (2021)

    Article  Google Scholar 

  21. S.T. Aruna, A.S. Mukasyan, Curr. Opin. Solid State Mater. Sci. 12, 44 (2008)

    Article  CAS  Google Scholar 

  22. A. Sharma, A. Rani, A. Singh, O.P. Modi, G.K. Gupta, Appl. Nanosci. 4, 315 (2014)

    Article  CAS  Google Scholar 

  23. R.S. Kate, S.A. Khalate, R.J. Deokate, J. Alloys Compd. 734, 89 (2018)

    Article  CAS  Google Scholar 

  24. W. Chen, Y. Wu, J. Fan, A.B. Djurišić, F. Liu, H.W. Tam, A. Ng, C. Surya, W.K. Chan, D. Wang, Z.-B. He, Adv. Energy Mater. 8, 1870091 (2018)

    Article  Google Scholar 

  25. G. Bharathy, P. Raji, J. Mater. Sci. Mater. Electron. 28, 17889 (2017)

    Article  CAS  Google Scholar 

  26. W. Sun, L. Xiao, X. Wu, J. Alloys Compd. 772, 465 (2019)

    Article  CAS  Google Scholar 

  27. P.H. Lee, B.T. Li, C.F. Lee, Z.H. Huang, Y.C. Huang, W.F. Su, Sol. Energy Mater. Sol. Cells 208, 110352 (2020)

    Article  CAS  Google Scholar 

  28. J. Al Boukhari, A. Khalaf, R. Awad, Appl. Phys. A Mater. Sci. Process. 126, 1–3 (2020)

    Article  Google Scholar 

  29. J. Al Boukhari, A. Khalaf, R. Sayed Hassan, R. Awad, Appl. Phys. A Mater. Sci. Process. 126, 1 (2020)

    Article  Google Scholar 

  30. J. Al Boukhari, A. Khalaf, R. Awad, J. Alloys Compd. 820, 153381 (2020)

    Article  CAS  Google Scholar 

  31. P.A. Sheena, H. Hitha, A. Sreedevi, T. Varghese, J. Mater. Sci. Mater. Electron. 31, 5769 (2020)

    Article  CAS  Google Scholar 

  32. S. Bhanuchandar, G. Vinothkumar, P. Arunkumar, M. Sribalaji, A.K. Keshri, K. Suresh Babu, J. Alloys Compd. 780, 256 (2019)

    Article  CAS  Google Scholar 

  33. F. Taghizadeh, Opt. Photonics J. 6, 164–169 (2016)

    Article  CAS  Google Scholar 

  34. J.H. He, S.L. Yuan, Y.S. Yin, Z.M. Tian, P. Li, Y.Q. Wang, K.L. Liu, C.H. Wang, J. Appl. Phys. 103, 023906 (2008)

    Article  Google Scholar 

  35. A.C. Gandhi, T.Y. Li, B.V. Kumar, P.M. Reddy, J.C. Peng, C.M. Wu, S.Y. Wu, Nanomaterials 10, 1 (2020)

    Google Scholar 

  36. S.A. Makhlouf, H. Al-Attar, R.H. Kodama, Solid State Commun. 145, 1 (2008)

    Article  CAS  Google Scholar 

  37. N.R. Aswathy, J. Varghese, R. Vinodkumar, J. Mater. Sci. Mater. Electron. 31, 16634 (2020)

    Article  CAS  Google Scholar 

  38. M.P. Proenca, C.T. Sousa, A.M. Pereira, P.B. Tavares, J. Ventura, M. Vazquez, J.P. Araujo, Phys. Chem. Chem. Phys. 13, 9561 (2011)

    Article  CAS  Google Scholar 

  39. D. Rajasekhar, C. Kuchi, B. Naresh, G.S. Harish, and P.S. Reddy, Indian J. Sci. Technol. 15, 1356–1363 (2022)

    Article  CAS  Google Scholar 

  40. A. Jafari, S. Pilban Jahromi, K. Boustani, B. T. Goh, and N. M. Huang, J. Magn. Magn. Mater. 469, 383 (2019).

  41. S. Layek, H.C. Verma, J. Magn. Magn. Mater. 397, 73 (2016)

    Article  CAS  Google Scholar 

  42. K.N. Patel, M.P. Deshpande, K. Chauhan, P. Rajput, V.P. Gujarati, S. Pandya, V. Sathe, S.H. Chaki, Adv. Powder Technol. 29, 2394 (2018)

    Article  CAS  Google Scholar 

  43. P. Ravikumar, B. Kisan, A. Perumal, AIP Adv. 5, 087116 (2015)

    Article  Google Scholar 

  44. K.N. Patel, M.P. Deshpande, V.P. Gujarati, S. Pandya, V. Sathe, S.H. Chaki, Mater. Res. Bull. 106, 187 (2018)

    Article  CAS  Google Scholar 

  45. H. Abbas, K. Nadeem, A. Hassan, S. Rahman, H. Krenn, Optik (Stuttg) 202, 163637 (2020)

    Article  CAS  Google Scholar 

  46. N. Ahammed, M. Mehedi Hassan, Int. Assoc. Adv. Mater. 10, 746 (2019)

    CAS  Google Scholar 

  47. M. Shkir, M. Arif, V. Ganesh, A. Singh, H. Algarni, I.S. Yahia, S. AlFaify, Appl. Phys. A Mater. Sci. Process. 126, 119 (2020)

    Article  CAS  Google Scholar 

  48. J. Wang, J. Cai, Y.H. Lin, C.W. Nan, Appl. Phys. Lett. 87, 1 (2005)

    Google Scholar 

  49. S. Liu, J. Jia, J. Wang, S. Liu, X. Wang, H. Song, X. Hu, J. Magn. Magn. Mater. 324, 2070 (2012)

    Article  CAS  Google Scholar 

  50. J.H. He, S.L. Yuan, Z.M. Tian, Y.S. Yin, P. Li, Y.Q. Wang, K.L. Liu, S.J. Yuan, X.L. Wang, L. Liu, J. Magn. Magn. Mater. 320, 3293 (2008)

    Article  CAS  Google Scholar 

  51. Y.H. Lin, J. Wang, J. Cai, M. Ying, R. Zhao, M. Li, C.W. Nan, Phys. Rev. B Condens. Matter Mater. Phys. 73, 193308 (2006)

    Article  Google Scholar 

  52. S. Manna, A.K. Deb, J. Jagannath, S.K. De, J. Phys. Chem. C 112, 10659 (2008)

    Article  CAS  Google Scholar 

  53. K. Noipa, S. Labuayai, E. Swatsitang, S. Maensiri, Electron. Mater. Lett. 10, 147 (2014)

    Article  CAS  Google Scholar 

  54. P. Mallick, C. Rath, R. Biswal, N.C. Mishra, Indian J. Phys. 83, 517–523 (2009)

    Article  CAS  Google Scholar 

  55. A.K. Mishra, S. Bandyopadhyay, D. Das, Mater. Res. Bull. 47, 2288 (2012)

    Article  CAS  Google Scholar 

  56. M. Shkir, M. Arif, V. Ganesh, A. Singh, H. Algarni, I.S. Yahia, S. AlFaify, Appl. Phys. A Mater. Sci. Process. 126, 1 (2020)

    Article  Google Scholar 

  57. M. Ramesh, SN Appl. Sci. 3, 817 (2021)

    CAS  Google Scholar 

  58. X. Li, J.F. Tan, Y.E. Hu, X.T. Huang, Mater. Res. Express 4, 045015 (2017)

    Article  Google Scholar 

  59. H. Abbas, K. Nadeem, S. Munir, U. Ahmed, M. Usman, and M. Kostyley, J. Ceram. Int. 48, 3435–3447 (2022)

    Article  CAS  Google Scholar 

  60. H. Abbas, K. Nadeem, H. Krenn, M. Kostylev, J. Hester, A.T. Murdock, S. Yick, I. Letofsky-Papst, C. Ulrich, Nanotechnology 31, 475701 (2020)

    Article  CAS  Google Scholar 

  61. N. Srivastava, P.C. Srivastava, Bull. Mater. Sci. 33, 653 (2010)

    Article  CAS  Google Scholar 

  62. B. Toboonsung, Key Eng. Mater. 751, 379 (2017)

    Article  Google Scholar 

  63. K.O. Moura, R.J.S. Lima, A.A. Coelho, E.A. Souza-Junior, J.G.S. Duque, C.T. Meneses, Nanoscale 6, 352 (2014)

    Article  CAS  Google Scholar 

  64. P.Y. Song, W. De Zhang, J. Nanosci. Nanotechnol. 13, 5868 (2013)

    Article  CAS  Google Scholar 

  65. M. Gomathi, P.V. Rajkumar, A. Prakasam, Results Phys. 10, 858 (2018)

    Article  Google Scholar 

  66. P.E. Saranya, S. Selladurai, New J. Chem. 43, 7441 (2019)

    Article  CAS  Google Scholar 

  67. Y. Slimani, M.A. Almessiere, E. Hannachi, A. Baykal, A. Manikandan, M. Mumtaz, F. Ben Azzouz, Ceram. Int. 45, 2621 (2019)

    Article  CAS  Google Scholar 

  68. M.A. Almessiere, Y. Slimani, E. Hannachi, R. Algarni, F. Ben Azzouz, J. Mater. Sci. Mater. Electron. 30, 17572 (2019)

    Article  CAS  Google Scholar 

  69. H. Mohamed Mohaideen, S. Sheik Fareed, B. Natarajan, Surf. Rev. Lett. 26, 1950043 (2019)

    Article  Google Scholar 

  70. W. McCormick, P. McDonagh, J. Doran, D. McCrudden, Catalysts 11, 1161 (2021)

    Article  CAS  Google Scholar 

  71. P.M. Ponnuswamy, S. Agilan, N. Muthukumarasamy, D. Velauthapillai, Z. Phys. Chem. 230, 1185–1197 (2016)

    Google Scholar 

  72. J. Gangwar, K. K. Dey, S. K. Tripathi, M. Wan, R. R. Yadav, R. K. Singh, and A. K. Srivastava, Nanotechnology 24, (2013).

  73. A. Diallo, K. Kaviyarasu, S. Ndiaye, B.M. Mothudi, A. Ishaq, V. Rajendran, M. Maaza, Green Chem. Lett. Rev. 11, 166 (2018)

    Article  CAS  Google Scholar 

  74. S. Chatterjee, R.P. Maiti, M. Miah, S.K. Saha, D. Chakravorty, ACS Omega B, 2, 283–289 (2017)

    Article  CAS  Google Scholar 

  75. Y. Zhu, C. Li, Q. Wang, J. Wang, L. Chen, M. Gu, Appl. Phys. Lett. 115, 415705 (2019)

    Google Scholar 

  76. Z. Qiu, Y. Ma, T. Edvinsson, Nano Energy 66, 104118 (2019)

    Article  CAS  Google Scholar 

  77. A. Manuscript, (2020)

  78. Y. Dong, J. Yang, Y. Liu, Y. Wang, Z. Dong, M. Cui, M. Li, X. Yuan, X. Zhang, X. Dai, Dalton Trans. 49, 6355 (2020)

    Article  CAS  Google Scholar 

  79. C.I. Medel-Ruiz, H.P. Ladrón de Guevara, J.R. Molina-Contreras, C. Frausto-Reyes, Solid State Commun. 312, 1 (2020)

    Article  Google Scholar 

  80. N.K.M. Safeer, C. Alex, R. Jana, A. Datta, N.S. John, J. Mater. Chem. A 10, 4209 (2022)

    Article  Google Scholar 

  81. P. Dubey, N. Kaurav, Structure Processing Properties Relationships in Stoichiometric and Nonstoichiometric Oxides. IntechOpen (2020)

  82. S. Ye, X. Guan, Appl. Sci. 9, 2599 (2019)

    Article  CAS  Google Scholar 

  83. H. Duan, Z. Chen, N. Xu, S. Qiao, G. Chen, D. Li, W. Deng, F. Jiang, J. Electroanal. Chem. 885, 114966 (2021)

    Article  CAS  Google Scholar 

  84. A. Perchlorate, S. Ye, X. Guan, Appl. Sci. 9, 2599 (2019)

    Article  Google Scholar 

  85. P.A. Sheena, H. Hitha, A. Sreedevi, T. Varghese, Mater. Chem. Phys. 229, 412 (2019)

    Article  CAS  Google Scholar 

  86. I.M. Ramírez-Sánchez, E.R. Bandala, Catalysts 8, 625 (2018)

    Article  Google Scholar 

  87. N.H.S. Nasralla, M. Yeganeh, Y. Astuti, S. Piticharoenphun, L. Šiller, J. Mater. Sci. Mater. Electron. 29, 17956 (2018)

    Article  CAS  Google Scholar 

  88. K. Fominykh, P. Chernev, I. Zaharieva, J. Sicklinger, G. Stefanic, M. Döblinger, A. Müller, A. Pokharel, S. Böcklein, C. Scheu, T. Bein, D. Fattakhova-Rohlfing, ACS Nano 9, 5180 (2015)

    Article  CAS  Google Scholar 

  89. I. Sugiyama, N. Shibata, Z. Wang, S. Kobayashi, T. Yamamoto, Y. Ikuhara, Nat. Nanotechnol. 8, 266 (2013)

    Article  CAS  Google Scholar 

  90. Y.J. Zhang, Y.D. Luo, Y.H. Lin, C.W. Nan, Appl. Phys. Lett. 104, 072402 (2014)

    Article  Google Scholar 

  91. L.Yi-Dong, L. Yuan-Hua, Z. Xuehui, L. Deping, S. Yang, N. Ce-Wen, J. Nanomater. (2013)

  92. R. Pradeep, A.C. Gandhi, Y. Tejabhiram, I.K. Md Mathar Sahib, Y. Shimura, L. Karmakar, D. Das, S.Y. Wu, Y. Hayakawa, Mater. Res. Express 4, 096103 (2017)

    Article  Google Scholar 

  93. J. Khemprasit, S. Kaen-Ngam, B. Khumpaitool, P. Kamkhou, J. Magn. Magn. Mater. 323, 2408 (2011)

    Article  CAS  Google Scholar 

  94. R. Pradeep, A.C. Gandhi, Y. Tejabhiram, I.K.M.M. Sahib, Y. Shimura, L. Karmakar, D. Das, S.Y. Wu, Y. Hayakawa, Mater. Res. Express 4, 096103 (2017)

    Article  Google Scholar 

  95. M.S.M. Ghazali, M.S. Shaifudin, W.R.W. Abdullah, W.M.I.W.M. Kamaruzzaman, M.F.M. Fekeri, M.A. Zulkifli, Sinter. Technol. Method Appl. (2018)

  96. P. Kameli, H. Salamati, A. Aezami, J. Alloys Compd. 450, 7 (2008)

    Article  CAS  Google Scholar 

  97. M.M. Syazwan, A.N. Hapishah, R.S. Azis, Z. Abbas, M.N. Hamidon, Results Phys. 9, 842 (2018)

    Article  Google Scholar 

  98. W. Yan, W. Weng, G. Zhang, Z. Sun, Q. Liu, Z. Pan, Y. Guo, P. Xu, S. Wei, Y. Zhang, S. Yan, Appl. Phys. Lett. 92, 052508 (2008)

    Article  Google Scholar 

  99. S. Prabhavathy, D. Arivuoli, J. Mater. Sci. Mater. Electron. 32, 1105 (2021)

    Article  CAS  Google Scholar 

  100. M. Naseem Siddique, A. Ahmed, T. Ali, P. Tripathi, IOP Conf. Ser. Mater. Sci. Eng. 577, 0 (2019)

    Article  Google Scholar 

  101. D.T. Speaks, Int. J. Mech. Mater. Eng. (2020). https://doi.org/10.1186/s40712-019-0113-6

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Funding

The authors declare that no funds, Grants, or other support were received during the preparation of manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the overall preparation of the manuscript. The preparation of samples, data collection, interpretation, and the first drafting of the manuscript was performed by KRS. The draft was thoroughly checked and valuable comments were given by NSN. Constant feedback was provided by NSN for the qualitative refinement of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Khem Raj Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K.R., Negi, N.S. Significant improvement in the structural, microstructural, and room-temperature magnetic properties of Fe-doped NiO nanoparticles prepared by the solution combustion method. J Mater Sci: Mater Electron 33, 22518–22540 (2022). https://doi.org/10.1007/s10854-022-09031-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09031-w

Navigation