Skip to main content
Log in

Structural, electrical and magnetic properties of nanosize and bulk Ni0.7Zn0.3Fe2O4 obtained by thermal autocatalytic decomposition of Ni0.7Zn0.3Fe2(C4H2O4)3·6N2H4 precursor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanosized Ni0.7Zn0.3Fe2O4 was synthesized by combustion of fumarato-hydrazinate precursor of metals having formula Ni0.7Zn0.3Fe2(C4H2O4)3·6N2H4. The precursor was chemically analyzed and was subjected to TG–DTG–DTA and infrared spectroscopy (IR) studies. The decomposition of the precursor was also studied isothermally at predefined temperature along with hydrazine estimation. The X-ray diffraction (XRD), IR, transmission electron microscopy (TEM), scanning electron microscopy, thermal analysis (TG–DTA), AC susceptibility and vibrating sample magnetometry were employed to investigate structural, thermal, electric and magnetic aspects of the ‘as prepared’ and ‘sintered’ Ni0.7Zn0.3Fe2O4 along with precursor. The nanosized single phase formation of ‘as prepared’ Ni0.7Zn0.3Fe2O4 was confirmed by XRD, IR and TEM. The XRD of sintered sample showed formation of impurity free Ni0.7Zn0.3Fe2O4 while AC susceptibility studies showed lower Curie temperature than ‘as prepared’ oxide with predominantly MD type of particles. The sintered sample also showed higher saturation magnetization and lower coercivity as compared to the ‘as prepared’ sample. The ZFC–FC studies revealed decrease in blocking temperature with increasing applied magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S. Thakur, S.C. Katyal, M. Singh, Structural and magnetic properties of nano nickel-zinc ferrite synthesized by reverse micelle technique. J. Magn. Magn. Mater. 321, 1–7 (2009)

    Article  Google Scholar 

  2. M. Sertkol, Y. Köseoğlu, A. Baykal, H. Kavas, M.S. Toprak, Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nanoparticles via microwave-assisted combustion route. J. Magn. Magn. Mater. 322, 866–871 (2010)

    Article  Google Scholar 

  3. A.M. El-Sayed, Influence of zinc content on some properties of Ni–Zn ferrites. Ceram. Int. 28, 363–367 (2002)

    Article  Google Scholar 

  4. R.V. Mangalaraja, S. Ananthakumar, P. Manohar, F.D. Gnanam, Magnetic hysteresis studies of Ni1−xZnxFe2O4 prepared by non-conventional techniques. Mater. Lett. 57, 2666–2669 (2003)

    Article  Google Scholar 

  5. J. Bera, P.K. Roy, Effect of grain size on electromagnetic properties of Ni0.7Zn0.3Fe2O4 ferrite. Phys. B 363, 128–132 (2005)

    Article  Google Scholar 

  6. S.S. Jadhav, S.E. Shirsath, B.G. Toksha, S.J. Shukla, K.M. Jadhav, Effect of cation proportion on the structural and magnetic properties of Ni-Zn ferrites nano-size particles prepared by co-precipitation technique. Chin. J. Chem. Phys. 21, 381–386 (2008)

    Article  Google Scholar 

  7. A.C.F.M. Costa, V.J. Silva, D.R. Cornejo, M.R. Morelli, R.H.G.A. Kiminami, L. Gama, Magnetic and structural properties of NiFe2O4 ferrite nanopowder doped with Zn2+. J. Magn. Magn. Mater. 320, e370–e372 (2008)

    Article  Google Scholar 

  8. G. Umapathy, G. Senguttuvam, L.J. Berchmans, V. Sivakumar, Structural, dielectric and AC conductivity studies of Zn substituted nickel ferrites prepared by combustion technique. J. Mater. Sci. Mater. Electron. 27, 7062–7072 (2016)

    Article  Google Scholar 

  9. M. Hamedoun, A. Benyoussef, M. Bousmina, Magnetic properties and phase diagram of ZnxNi1–xFe2O4: high-temperature series expansions. J. Magn. Magn. Mater. 322, 3227–3235 (2010)

    Article  Google Scholar 

  10. M. Jalaly, M.H. Enayati, P. Kameli, F. Karimzadeh, Effect of composition on structural and magnetic properties of nanocrystalline ball milled Ni1−xZnxFe2O4 ferrite. Phys. B 405, 507–512 (2010)

    Article  Google Scholar 

  11. A.S. Fawzi, A.D. Sheikh, V.L. Mathe, Structural, dielectric properties and AC conductivity of Ni(1–x)ZnxFe2O4 spinel ferrites. J. Alloy. Compd. 502, 231–237 (2010)

    Article  Google Scholar 

  12. S. Nasir, G. Asghar, M.A. Malik, M. Anis-u-Rehman, Structural, dielectric and electrical properties of zinc doped nickel nanoferrites prepared by simplified sol–gel method. J. Sol-Gel Sci. Technol. 59, 111–116 (2011)

    Article  Google Scholar 

  13. R. Deivakumaran, G. Sathya, S.K. Suresh Babu, L.J. Berchmans, Structural, morphological, optical, magnetic and dielectric properties of Ni1−xZnxFe2O4 (x = 0–1) nanoparticles. J. Mater. Sci. Mater. Electron. 28, 1726–1739 (2017)

    Article  Google Scholar 

  14. M.A. Gabal, R.M. El-Shishtawy, Y.M. Al Angari, Structural and magnetic properties of nano-crystalline Ni–Zn ferrites synthesized using egg-white precursor. J. Magn. Magn. Mater. 324, 2258–2264 (2012)

    Article  Google Scholar 

  15. F.S. Tehrani, V. Daadmehr, A.T. Rezakhani, R.H. Akbarnejad, S. Gholipour, Structural, magnetic, and optical properties of zinc- and copper-substituted nickel ferrite nanocrystals. J. Supercond. Novel Magn. 25, 2443–2455 (2012)

    Article  Google Scholar 

  16. Ch Srinivas, B.V. Tirupanyam, A. Satish, V. Seshubai, D.L. Sastry, O.F. Caltun, Effect of Ni2+ substitution on structural and magnetic properties of Ni–Zn ferrite nanoparticles. J. Magn. Magn. Mater. 382, 15–19 (2015)

    Article  Google Scholar 

  17. Ch Srinivas, B.V. Tirupanyam, S.S. Meena, S.M. Yusuf, C.S. Babu, K.S. Ramakrishna, D.M. Potukuchi, D.L. Sastry, Structural and magnetic characterization of co-precipitated NixZn1–xFe2O4 ferrite nanoparticles. J. Magn. Magn. Mater. 407, 135–141 (2016)

    Article  Google Scholar 

  18. S.Y. Sawant, K.R. Kannan, V.M.S. Verenkar, Synthesis, characterization and thermal analysis of nickel manganese fumarato-hydrazinate, in Proceeding of the 13th National Symposium on Thermal Analysis, BARC Mumbai, Indian Thermal Analysis Society, 2002, pp. 154–155

  19. K.S. Rane, V.M.S. Verenkar, Synthesis of ferrite grade γ-Fe2O3. Bull. Mater. Sci. 24, 39–45 (2001)

    Article  Google Scholar 

  20. R.A. Porob, S.Z. Khan, S.C. Mojumdar, V.M.S. Verenkar, Synthesis, TG, DSC, and infrared spectral study of NiMn2(C4H4O4)3·6N2H4-a precursor for NiMn2O4 nanoparticles. J. Therm. Anal. Calorim. 86, 605–608 (2006)

    Article  Google Scholar 

  21. S.Y. Sawant, V.M.S. Verenkar, S.C. Mojumdar, Preparation, thermal, XRD, chemical, and FTIR spectral analysis of NiMn2O4 nanoparticles and respective precursor. J. Therm. Anal. Calorim. 90, 669–672 (2007)

    Article  Google Scholar 

  22. A. More, V.M.S. Verenkar, S.C. Mojumdar, Nickel ferrite nanoparticle synthesis from novel fumarato-hydrazinate precursor. J. Therm. Anal. Calorim. 94, 63–67 (2008)

    Article  Google Scholar 

  23. L.R. Gonsalves, V.M.S. Verenkar, S.C. Mojumdar, Preparation and characterization of Co0.5Zn0.5Fe2(C4H2O4)3·6N2H4: a precursor to prepare Co0.5Zn0.5Fe2O4 nanoparticles. J. Therm. Anal. Calorim. 96, 53–57 (2009)

    Article  Google Scholar 

  24. U.B. Gawas, S.C. Mojumdar, V.M.S. Verenkar, Ni0.5Mn0.1Zn0.4Fe2(C4H2O4)3·6N2H4 precursor and Ni0.5Mn0.1Zn0.4Fe2O4 nanoparticle: preparation, IR spectral, XRD, SEM-EDS and thermal analysis. J. Therm. Anal. Calorim. 96, 49–52 (2009)

    Article  Google Scholar 

  25. L.R. Gonsalves, S.C. Mojumdar, V.M.S. Verenkar, Synthesis of cobalt nickel ferrite nanoparticles via autocatalytic decomposition of the precursor. J. Therm. Anal. Calorim. 100, 789–792 (2010)

    Article  Google Scholar 

  26. U.B. Gawas, S.C. Mojumdar, V.M.S. Verenkar, Synthesis, characterization, infrared studies and thermal analysis of Mn0.6Zn0.4Fe2(C4H2O4)3·6N2H4 and its decomposition product Mn0.6Zn0.4Fe2O4. J. Therm. Anal. Calorim. 100, 867–871 (2010)

    Article  Google Scholar 

  27. L.R. Gonsalves, S.C. Mojumdar, V.M.S. Verenkar, Synthesis and characterization of Co0.8Zn0.2Fe2O4 nanoparticles. J. Therm. Anal. Calorim. 104, 869–873 (2011)

    Article  Google Scholar 

  28. U.B. Gawas, V.M.S. Verenkar, S.C. Mojumdar, Synthesis and characterization of Ni0.6Zn0.4Fe2O4 nano-particles obtained by auto catalytic thermal decomposition of carboxylato-hydrazinate complex. J. Therm. Anal. Calorim. 104, 879–883 (2011)

    Article  Google Scholar 

  29. L.R. Gonsalves, S.C. Mojumdar, V.M.S. Verenkar, Synthesis and characterization of ultrafine spinel ferrites obtained by precursor combustion technique. J. Therm. Anal. Calorim. 108, 859–863 (2012)

    Article  Google Scholar 

  30. U.B. Gawas, V.M.S. Verenkar, S.C. Mojumdar, Nano-crystalline Mn0.3Ni0.3Zn0.4Fe2O4 obtained by novel fumarato-hydrazinate precursor method: synthesis, characterization and studies of magnetic and electrical properties. J. Therm. Anal. Calorim. 108, 865–870 (2012)

    Article  Google Scholar 

  31. L.R. Gonsalves, V.M.S. Verenkar, Synthesis and thermal studies of the cobalt zinc ferrous fumarato-hydrazinate: a precursor to obtain nanosize ferrites. J. Therm. Anal. Calorim. 108, 871–875 (2012)

    Article  Google Scholar 

  32. L.R. Gonsalves, V.M.S. Verenkar, Synthesis and characterization of nanosize nickel doped cobalt ferrite obtained by precursor combustion technique. J. Therm. Anal. Calorim. 108, 877–880 (2012)

    Article  Google Scholar 

  33. U.B. Gawas, V.M.S. Verenkar, Synthesis, thermo-analytical and IR spectral studies of hydrazinated mixed metal carboxylates: a single source precursor to nanosize mixed metal oxides. Thermochim. Acta 556, 41–46 (2013)

    Article  Google Scholar 

  34. U.B. Gawas, V.M.S. Verenkar, Synthesis, thermal and infrared spectroscopic studies of hydrazinated mixed metal fumarates. J. Therm. Anal. Calorim. 115, 375–381 (2014)

    Article  Google Scholar 

  35. S.G. Gawas, V.M.S. Verenkar, S.C. Mojumdar, Synthesis and characterization of nickel cobalt zinc ferrous hydrazine fumarate: a single source precursor to nanocrystalline Ni0.4Co0.2Zn0.4Fe2O4. J. Therm. Anal. Calorim. 119, 825–830 (2015)

    Article  Google Scholar 

  36. S.G. Gawas, V.M.S. Verenkar, Precursor combustion synthesis of nanocrystalline cobalt substituted nickel zinc ferrites from hydrazinated mixed metal fumarates. Thermochim. Acta 605, 16–21 (2015)

    Article  Google Scholar 

  37. U.B. Gawas, V.M.S. Verenkar, S.R. Barman, S.S. Meena, P. Bhatt, Synthesis of nanosize and sintered Mn0.3Ni0.3Zn0.4Fe2O4 ferrite and their structural and dielectric studies. J. Alloy. Compd. 555, 225–231 (2013)

    Article  Google Scholar 

  38. D.H. Wilkins, The determination of nickel, cobalt, iron and zinc in ferrites. Anal. Chim. Acta 20, 271–273 (1959)

    Article  Google Scholar 

  39. G.H. Jeffery, J. Bassett, J. Mendham, R.C. Danney (eds.), Vogel’s Text Book of Quantitative Inorganic Analysis’, 5th edn. (Logman, London, 1989)

    Google Scholar 

  40. K.S. Rane, V.M.S. Verenkar, R.M. Pednekar, P.Y. Sawant, Hydrazine method of synthesis of γ- Fe2O3. J. Mater. Sci. Mater. Electron. 10, 121–132 (1999)

    Article  Google Scholar 

  41. A.V. Humbe, A.C. Nawle, A.B. Shinde, K.M. Jadhav, Impact of Jahn Teller ion on magnetic and semiconducting behavior of Ni-Zn spinel ferrite synthesized by nitrate-citrate route. J. Alloy. Compd. 691, 343–354 (2017)

    Article  Google Scholar 

  42. I.H. Gul, W. Ahmed, A. Maqsood, Electrical and magnetic characterization of nanocrystalline Ni-Zn ferrite synthesis by co-precipitation route. J. Magn. Magn. Mater. 320, 270–275 (2008)

    Article  Google Scholar 

  43. P.P. Sarangi, S.R. Vadera, M.K. Patra, N.N. Ghosh, Synthesis and characterization of pure single phase Ni-Zn ferrite nanopowders by oxalate based precursor method. Powder Technol. 203, 348–353 (2010)

    Article  Google Scholar 

  44. E.J.W. Verwey, Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 144, 327–328 (1939)

    Article  Google Scholar 

  45. A.D. Sheikh, V.L. Mathe, Anomalous electrical properties of nanocrystalline Ni–Zn ferrite. J. Mater. Sci. 43, 2018–2025 (2008)

    Article  Google Scholar 

  46. A. Hajalilou, H.M. Kamari, K. Shameli, Dielectric and electrical characteristics of mechanically synthesized Ni-Zn ferrite nanoparticles. J. Alloy. Compd. 708, 813–826 (2017)

    Article  Google Scholar 

  47. M.A. Ali, M.M. Uddin, M.N.I. Khan, F.-U.-Z. Chowdhury, S.M. Haque, Structural, morphological and electrical properties of Sn- substituted Ni-Zn ferrites synthesized by double sintering technique. J. Magn. Magn. Mater. 424, 148–154 (2017)

    Article  Google Scholar 

  48. N.D. Chaudhari, R.C. Kambale, D.N. Bhosale, S.S. Suryavanshi, S.R. Sawant, Thermal hysteresis and domain states in Ni-Zn ferrites synthesized by oxalate precursor method. J. Magn. Magn. Mater. 322, 1999–2005 (2010)

    Article  Google Scholar 

  49. T.J. Shinde, A.B. Gadkari, P.N. Vasambekar, Magnetic properties and cation distribution study of nanocrystalline Ni-Zn ferrites. J. Magn. Magn. Mater. 333, 152–155 (2013)

    Article  Google Scholar 

  50. O.A. Li, C.-R. Lin, H.-Y. Chen, H.-S. Hsu, K.-Y. Shih, I.S. Edelman, K.-W. Wu, Y.-T. Tseng, S.G. Ovchinnikov, J.-S. Lee, Size dependent magnetic and magneto-optical properties of Ni0.2Zn0.8Fe2O4 nanoparticles. J. Magn. Magn. Mater. 408, 206–212 (2016)

    Article  Google Scholar 

  51. V. Grimal, D. Autissier, L. Longuet, H. Pascard, M. Gervais, Iron, nickel and zinc stoichiometric influences on the dynamic magneto-elastic properties of spinel ferrites. J. Eur. Ceram. Soc. 26, 3687–3693 (2006)

    Article  Google Scholar 

  52. S. Mukherjee, S. Pradip, A.K. Mishra, D. Das, Zn substituted NiFe2O4 with very high saturation magnetization and negligible dielectric loss synthesized via a soft chemical route. Appl. Phys. A 116, 389–393 (2014)

    Article  Google Scholar 

  53. Y.B. Kannan, R. Saravanan, N. Srinivasan, I. Ismail, Sintering effect on structural, magnetic and optical properties of Ni0.5Zn0.5Fe2O4 ferrite nano particles. J. Magn. Magn. Mater. 423, 217–225 (2017)

    Article  Google Scholar 

  54. R.E. Kumar, A.S. Kamzin, T. Prakash, Effect of particle size on structural, magnetic and dielectric properties of manganese substituted nickel ferrite nanoparticles. J. Magn. Magn. Mater. 378, 389–396 (2015)

    Article  Google Scholar 

  55. M.A. Gabal, Y.M. Al Angari, F.A. Al-Agel, Cr-substituted Ni-Zn ferrites via oxalate decomposition. Structural, electrical and magnetic properties. J. Magn. Magn. Mater. 391, 108–115 (2015)

    Article  Google Scholar 

  56. I. Szczygieł, K. Winiarska, A. Bieńko, K. Suracka, D. Gaworska-Koniarek, The effect of the sol-gel autocombustion synthesis conditions on the Mn-Zn ferrite magnetic properties. J. Alloy. Compd. 604, 1–7 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

One of the author, Prajyoti P. Gauns Dessai, would like to thank DST, New Delhi for providing financial support in form of INSPIRE fellowship. The authors are grateful for the financial support from DST, New Delhi through the Nano Mission project No. SR/NM/NS-86/2009 and also under FIST. The authors are also thankful to UGC, New Delhi for the financial support under SAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. S. Verenkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gauns Dessai, P.P., Verenkar, V.M.S. Structural, electrical and magnetic properties of nanosize and bulk Ni0.7Zn0.3Fe2O4 obtained by thermal autocatalytic decomposition of Ni0.7Zn0.3Fe2(C4H2O4)3·6N2H4 precursor. J Mater Sci: Mater Electron 29, 6924–6936 (2018). https://doi.org/10.1007/s10854-018-8679-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8679-y

Navigation