Skip to main content

Advertisement

Log in

Doping Effect of Cobalt on Various Properties of Nickel Oxide Prepared by Solution Combustion Method

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Pure and cobalt-doped (Co-2 to 10 mol%) nickel oxide (NiO) powder samples were prepared by solution combustion method and annealed at 600 °C for 2 h. The crystalline and structural properties were characterised by using X-ray diffraction (XRD) and Raman spectroscopy. Field emission scanning electron microscope (FESEM) and energy-dispersive spectroscopy (EDAX) techniques were used to study the surface morphology and characteristic elements present in samples. Higher value of retentivity (12.20 × 10−2 emu/g) and coercivity (900 Oe) is found for 10 mol% Co-doped NiO, which is much higher than pure NiO. Such properties improve the magnetic memory and hardness of a magnetic material. A decrease in an optical band gap from 2.67 to 2.05 eV was observed for pure and Co-doped (2 to 10 mol%) NiO powder samples, which is quite useful in optoelectronic devices. Maximum value of conductivity (11.23 × 10−6 Ω−1 cm−1) and dielectric constant (204) is found for Co 6 mol%-doped NiO. All the measurements were recorded at room temperature so as to utilise them for device fabrication readily. A significant improvement in magnetic, optical and dielectric properties was observed for NiO with increasing concentration of cobalt, which makes it a better choice for spintronic, optoelectronic, magnetic and storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Yes, data and material are available.

References

  1. Lee, H.J., Jeong, S.Y., Cho, C.R., Park, C.H.: Study of diluted magnetic semiconductor: Co-doped ZnO. Appl. Phys. Lett. 81, 4020–4022 (2002). https://doi.org/10.1063/1.1517405

    Article  ADS  Google Scholar 

  2. Li, X., Wu, S., Hu, P., Xing, X., Liu, Y., Yu, Y., Yang, M., Lu, J., Li, S., Liu, W.: Structures and magnetic properties of p -type Mn: TiO2 dilute magnetic semiconductor thin films. J. Appl. Phys. 106, 043913 (2009). https://doi.org/10.1063/1.3204493

    Article  ADS  Google Scholar 

  3. Zhang, H.W., Wei, Z.R., Li, Z.Q., Dong, G.Y.: Room-temperature ferromagnetism in Fe-doped, Fe- and Cu-codoped ZnO diluted magnetic semiconductor. Mater. Lett. 61, 3605–3607 (2007). https://doi.org/10.1016/j.matlet.2006.11.139

    Article  Google Scholar 

  4. Hong, N.H., Sakai, J., Brizé, V.: Observation of ferromagnetism at room temperature in ZnO thin films. J. Phys. Condens. Matter. 19, 036219 (2007). https://doi.org/10.1088/0953-8984/19/3/036219

    Article  ADS  Google Scholar 

  5. Banerjee, S., Mandal, M., Gayathri, N., Sardar, M.: Enhancement of ferromagnetism upon thermal annealing in pure ZnO. Appl. Phys. Lett. 91, 182501 (2007). https://doi.org/10.1063/1.2804081

    Article  ADS  Google Scholar 

  6. Sundaresan, A., Bhargavi, R., Rangarajan, N., Siddesh, U., Rao, C.N.R.: Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B - Condens. Matter Mater. Phys. 74(161306), (2006). https://doi.org/10.1103/PhysRevB.74.161306

  7. Kim, D., Hong, J., Park, Y.R., Kim, K.J.: The origin of oxygen vacancy induced ferromagnetism in undoped TiO 2. J. Phys. Condens. Matter. 21, 195405 (2009). https://doi.org/10.1088/0953-8984/21/19/195405

    Article  ADS  Google Scholar 

  8. Singh, N.S., Singh, S.D., Bandyopadhyay, S.K.: Magnetic properties of Zn1-xCoxO nanoparticles. In: Physics Procedia. pp. 2–9. Elsevier B.V. (2014)

  9. Machado, F.L.A., Ribeiro, P.R.T., Holanda, J., Rodríguez-Suárez, R.L., Azevedo, A., Rezende, S.M.: Spin-flop transition in the easy-plane antiferromagnet nickel oxide. Phys. Rev. B. 95, 104418 (2017). https://doi.org/10.1103/PhysRevB.95.104418

    Article  ADS  Google Scholar 

  10. Ohno, H., Munekata, H., Penney, T., Von Molnar, S., Chang, L.L.: Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors. Phys. Rev. Lett. 68, 2664–2667 (1992). https://doi.org/10.1103/PhysRevLett.68.2664

    Article  ADS  Google Scholar 

  11. Ohno, H., Munekata, H., Von Molnár, S., Chang, L.L.: New III-V diluted magnetic semiconductors (invited). J. Appl. Phys. 69, 6103–6108 (1991). https://doi.org/10.1063/1.347780

    Article  ADS  Google Scholar 

  12. Van Esch, A., De Boeck, J., Van Bockstal, L., Bogaerts, R., Herlach, F., Borghs, G.: Magnetotransport and magnetization properties of p-type Ga1-xMnxAs, a new III-V diluted magnetic semiconductor. J. Phys. Condens. Matter. 9, L361 (1997). https://doi.org/10.1088/0953-8984/9/24/003

    Article  Google Scholar 

  13. Jafari, A., Pilban Jahromi, S., Boustani, K., Goh, B.T., Huang, N.M.: Evolution of structural and magnetic properties of nickel oxide nanoparticles: influence of annealing ambient and temperature. J. Magn. Magn. Mater. 469, 383–390 (2019). https://doi.org/10.1016/j.jmmm.2018.08.005

    Article  ADS  Google Scholar 

  14. Zaanen, J., Sawatzky, G.A., Allen, J.W.: Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418–421 (1985). https://doi.org/10.1103/PhysRevLett.55.418

    Article  ADS  Google Scholar 

  15. Dekkers, M., Rijnders, G., Blank, D.H.A.: ZnIr2O4, a p-type transparent oxide semiconductor in the class of spinel zinc-d6-transition metal oxide. Appl. Phys. Lett. 90, 021903 (2007). https://doi.org/10.1063/1.2431548

    Article  ADS  Google Scholar 

  16. Wang, J., Cai, J., Lin, Y.H., Nan, C.W.: Room-temperature ferromagnetism observed in Fe-doped NiO. Appl. Phys. Lett. 87, 1–3 (2005). https://doi.org/10.1063/1.2130532

    Article  Google Scholar 

  17. Tadic, M., Nikolic, D., Panjan, M., Blake, G.R.: Magnetic properties of NiO (nickel oxide) nanoparticles: blocking temperature and Neel temperature. J. Alloys Compd. 647, 1061–1068 (2015). https://doi.org/10.1016/j.jallcom.2015.06.027

    Article  Google Scholar 

  18. Rostamnejadi, A., Bagheri, S.: Optical, magnetic, and microwave properties of Ni/NiO nanoparticles. Appl. Phys. A Mater. Sci. Process. 123, 233 (2017). https://doi.org/10.1007/s00339-017-0853-1

    Article  ADS  Google Scholar 

  19. Kim, K.H., Takahashi, C., Abe, Y., Kawamura, M.: Effects of Cu doping on nickel oxide thin film prepared by sol-gel solution process. Optik (Stuttg). 125, 2899–2901 (2014). https://doi.org/10.1016/j.ijleo.2013.11.074

    Article  ADS  Google Scholar 

  20. Siddique, M.N., Ahmed, A., Tripathi, P.: Electric transport and enhanced dielectric permittivity in pure and Al doped NiO nanostructures. J. Alloys Compd. 735, 516–529 (2018). https://doi.org/10.1016/j.jallcom.2017.11.114

    Article  Google Scholar 

  21. Nogués, J., Langlais, V., Sort, J., Doppiu, S., Suriñach, S., Baró, M.D.: Magnetic properties of Ni-NiO (ferromagnetic–antiferromagnetic) nanocomposites obtained from a partial mechanochemical reduction of NiO. J. Nanosci. Nanotechnol. 8, 2923–2928 (2020). https://doi.org/10.1166/jnn.2008.18319

    Article  Google Scholar 

  22. Agbogu, A.N.C., Orji, M.P., Ekwealor, C.: Investigations into the influence of temperature on the optical properties of NiO thin films. (2018)

  23. Chen, H.-L., Lu, Y.-M., Hwang, W.-S.: Characterization of sputtered NiO thin films. (2005). https://doi.org/10.1016/j.surfcoat.2004.10.032

  24. Taşköprü, T., Bayansal, F., Şahin, B., Zor, M.: Structural and optical properties of Co-doped NiO films prepared by SILAR method. Philos. Mag. 95, 32–40 (2015). https://doi.org/10.1080/14786435.2014.984788

    Article  ADS  Google Scholar 

  25. Kate, R.S., Bulakhe, S.C., Deokate, R.J.: Co doping effect on structural and optical properties of nickel oxide (NiO) thin films via spray pyrolysis. Opt. Quant. Electron. 51, 319 (2019). https://doi.org/10.1007/s11082-019-2026-2

    Article  Google Scholar 

  26. Agrawal, S., Parveen, A., Azam, A.: Microwave assisted synthesis of Co doped NiO nanoparticles and its fluorescence properties. J. Lumin. 184, 250–255 (2017). https://doi.org/10.1016/j.jlumin.2016.12.035

    Article  Google Scholar 

  27. Li, Y., Fang, L., Liu, L., Huang, Y., Hu, C.: Giant dielectric response and charge compensation of Li- and Co-doped NiO ceramics. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 177, 673–677 (2012). https://doi.org/10.1016/j.mseb.2012.03.054

    Article  Google Scholar 

  28. Thi, T.V., Rai, A.K., Gim, J., Kim, J.: High performance of Co-doped NiO nanoparticle anode material for rechargeable lithium ion batteries. J. Power Sources. 292, 23–30 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.029

    Article  Google Scholar 

  29. Zhang, J.H., Cai, G.F., Zhou, D., Tang, H., Wang, X.L., Gu, C.D., Tu, J.P.: Co-doped NiO nanoflake array films with enhanced electrochromic properties. J. Mater. Chem. C. 2, 7013–7021 (2014). https://doi.org/10.1039/c4tc01033g

    Article  Google Scholar 

  30. Xu, L., Chen, X., Jin, J., Liu, W., Dong, B., Bai, X., Song, H., Reiss, P.: Inverted perovskite solar cells employing doped NiO hole transport layers: a review, (2019)

  31. Lee, P.H., Li, B.T., Lee, C.F., Huang, Z.H., Huang, Y.C., Su, W.F.: High-efficiency perovskite solar cell using cobalt doped nickel oxide hole transport layer fabricated by NIR process. Sol. Energy Mater. Sol. Cells. 208, 110352 (2020). https://doi.org/10.1016/j.solmat.2019.110352

    Article  Google Scholar 

  32. Usha, V., Kalyanaraman, S., Vettumperumal, R., Thangavel, R.: A study of frequency dependent electrical and dielectric properties of NiO nanoparticles. Phys. B Condens. Matter. 504, 63–68 (2017). https://doi.org/10.1016/j.physb.2016.10.011

    Article  ADS  Google Scholar 

  33. Sagadevan, S., Rajesh, S., Das, I.: Studies on nanocrystalline nickel oxide thin films for potential applications. In: Materials Today: Proceedings, pp. 4123–4129. Elsevier Ltd (2017)

  34. Schuler, T.M., Ederer, D.L., Itza-Ortiz, S., Woods, G.T., Callcott, T.A., Woicik, J.C.: Character of the insulating state in NiO: a mixture of charge-transfer and Mott-Hubbard character. https://doi.org/10.1103/PhysRevB.71.115113

  35. Bharathy, G., Raji, P.: Room temperature ferromagnetic behavior of Mn doped NiO nanoparticles: a suitable electrode material for supercapacitors. J. Mater. Sci. Mater. Electron. 28, 17889–17895 (2017). https://doi.org/10.1007/s10854-017-7730-8

    Article  Google Scholar 

  36. Layek, S., Verma, H.C.: Room temperature ferromagnetism in Mn-doped NiO nanoparticles. J. Magn. Magn. Mater. 397, 73–78 (2016). https://doi.org/10.1016/j.jmmm.2015.08.082

    Article  ADS  Google Scholar 

  37. Lecture 25 Hysteresis in Ferromagnetic Materials

  38. Sheena, P.A., Hitha, H., Sreedevi, A., Varghese, T.: Microstructural characterization and modified spectral response of cobalt doped NiO nanoparticles. Mater. Chem. Phys. 229, 412–420 (2019). https://doi.org/10.1016/j.matchemphys.2019.03.033

    Article  Google Scholar 

  39. Ponnusamy, P.M., Agilan, S., Muthukumarasamy, N., Velauthapillai, D.: Effect of chromium and cobalt addition on structural, optical and magnetic properties of NiO nanoparticles. Zeitschrift fur Phys. Chemie. 230, 1185–1197 (2016). https://doi.org/10.1515/zpch-2015-0678

    Article  Google Scholar 

  40. Patel, K.N., Deshpande, M.P., Chauhan, K., Rajput, P., Gujarati, V.P., Pandya, S., Sathe, V., Chaki, S.H.: Effect of Mn doping concentration on structural, vibrational and magnetic properties of NiO nanoparticles. Adv. Powder Technol. 29, 2394–2403 (2018). https://doi.org/10.1016/j.apt.2018.06.018

    Article  Google Scholar 

  41. Al Boukhari, J., Zeidan, L., Khalaf, A., Awad, R.: Synthesis, characterization, optical and magnetic properties of pure and Mn, Fe and Zn doped NiO nanoparticles. Chem. Phys. 516, 116–124 (2019). https://doi.org/10.1016/j.chemphys.2018.07.046

    Article  Google Scholar 

  42. Sunny, A., Karthikeyen, B.: Plasmon induced enhancement of surface phonon and magnon properties of NiO nanoparticles: Raman spectral probe. Phys. Chem. Chem. Phys. 22, 22815 (2020). https://doi.org/10.1039/D0CP03720F

    Article  Google Scholar 

  43. Akinkuade, S.T., Meyer, W.E., Nel, J.M.: Effects of thermal treatment on structural, optical and electrical properties of NiO thin films. Phys. B Condens. Matter. 575, 411694 (2019). https://doi.org/10.1016/j.physb.2019.411694

    Article  Google Scholar 

  44. Anandha Babu, G., Ravi, G., Mahalingam, T., Kumaresavanji, M., Hayakawa, Y.: Influence of microwave power on the preparation of NiO nanoflakes for enhanced magnetic and supercapacitor applications. Dalt. Trans. 44, 4485–4497 (2015). https://doi.org/10.1039/c4dt03483j

    Article  Google Scholar 

  45. Thakur, S., Parmar, K., Sharma, S., Negi, N.S.: Structural, magnetic, and electrical Properties of (1-x) Na0.5Bi0.5TiO3 –(x) NiFe2O4(x = 0.1, 0.3, 0.5, 0.7, and 0.9) Multiferroic Particulate Composite. J. Supercond. Nov. Magn. (2020). https://doi.org/10.1007/s10948-020-05696-8

  46. Fonseca, S.G.C., Neiva, L.S., Bonifácio, M.A.R., Dos Santos, P.R.C., Silva, U.C., De Oliveira, J.B.L.: Tunable magnetic and electrical properties of cobalt and zinc ferrites CO1-XZnXFe2O4 synthesized by combustion route. Mater. Res. 21, (2018). https://doi.org/10.1590/1980-5373-MR-2017-0861

  47. Saffari, F., Kameli, P., Rahimi, M., Ahmadvand, H., Salamati, H.: Effects of co-substitution on the structural and magnetic properties of NiCoxFe2-xO4 ferrite nanoparticles. Ceram. Int. 41, 7352–7358 (2015). https://doi.org/10.1016/j.ceramint.2015.02.038

    Article  Google Scholar 

  48. Bharathy, G., Raji, P.: Pseudocapacitance of Co doped NiO nanoparticles and its room temperature ferromagnetic behavior. Phys. B Condens. Matter. 530, 75–81 (2018). https://doi.org/10.1016/j.physb.2017.10.106

    Article  ADS  Google Scholar 

  49. Mallick, P., Mishra, N.C.: Evolution of structure, microstructure, electrical and magnetic properties of nickel oxide (NiO) with transition metal ion doping. Am. J. Mater. Sci. 2012, 66–71 (2012). https://doi.org/10.5923/j.materials.20120203.06

    Article  Google Scholar 

  50. Tadic, M., Panjan, M., Markovic, D., Stanojevic, B., Jovanovic, D., Milosevic, I., Spasojevic, V.: NiO core-shell nanostructure with ferromagnetic-like behavior at room temperature. J. Alloys Compd. 586, S322–S325 (2014). https://doi.org/10.1016/j.jallcom.2012.10.166

    Article  Google Scholar 

  51. Sugiyama, I., Shibata, N., Wang, Z., Kobayashi, S., Yamamoto, T., Ikuhara, Y.: Ferromagnetic dislocations in antiferromagnetic NiO. Nat. Nanotechnol. 8, 266–270 (2013). https://doi.org/10.1038/nnano.2013.45

    Article  ADS  Google Scholar 

  52. Madhu, G., Maniammal, K., Biju, V.: Defect induced ferromagnetic interaction in nanostructured nickel oxide with core-shell magnetic structure: the role of Ni2+ and O2- vacancies. Phys. Chem. Chem. Phys. 18, 12135–12148 (2016). https://doi.org/10.1039/c5cp03710g

    Article  Google Scholar 

  53. Bakr, N.A., Salman, S.A., Shano, A.M.: Effect of Co doping on structural and optical properties of NiO thin films prepared by chemical spray pyrolysis method. Int. Lett. Chem. Phys. Astron. 41, 15–30 (2014). https://doi.org/10.18052/www.scipress.com/ilcpa.41.15

    Article  Google Scholar 

  54. Jang, W.L., Lu, Y.M., Hwang, W.S., Hsiung, T.L., Wang, H.P.: Point defects in sputtered NiO films. Appl. Phys. Lett. 94, 062103 (2009). https://doi.org/10.1063/1.3081025

    Article  ADS  Google Scholar 

  55. Biju, V., Abdul Khadar, M.: DC conductivity of consolidated nanoparticles of NiO. Mater. Res. Bull. 36, 21–33 (2001). https://doi.org/10.1016/S0025-5408(01)00488-3

    Article  Google Scholar 

  56. Gokul, B., Matheswaran, P., Abhirami, K.M., Sathyamoorthy, R.: Structural and dielectric properties of NiO nanoparticles. J. Non-Cryst. Solids. 363, 161–166 (2013). https://doi.org/10.1016/j.jnoncrysol.2012.12.007

    Article  ADS  Google Scholar 

  57. Parveen, A., Agrawal, S., Azam, A.: Microstructural and optical properties of Co doped NiO nanoparticles synthesized by auto combustion using NaOH as fuel. In: AIP Conference Proceedings. p. 030231. American Institute of Physics Inc. (2018)

Download references

Acknowledgements

The authors are grateful to Dr. Hakikat Sharma and Ms. Shilpa Thakur for providing their help in the proof reading of the article. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khem Raj Sharma.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K.R., Negi, N.S. Doping Effect of Cobalt on Various Properties of Nickel Oxide Prepared by Solution Combustion Method. J Supercond Nov Magn 34, 633–645 (2021). https://doi.org/10.1007/s10948-020-05753-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05753-2

Keywords

Navigation