Skip to main content
Log in

An effect of Fe on physical properties of nanostructured NiO thin films for nonlinear optoelectronic applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanostructured NiO thin films are fabricated with various concentrations of Fe through a simple spin-coating route and studied for its possible nonlinear optoelectronic applications. The grown films are of good crystallinity grown along (111) plane with single phase of NiO approved by X-ray analysis. The crystallite size values were calculated and noticed to be reduced from 36 to 8 nm with increasing Fe-doping content. Furthermore, FT-Raman spectroscopy also confirmed single phase. EDX approves the presence of Ni, O and Fe in final films and SEM elemental mapping shows homogeneous doping of Fe throughout the NiO films. AFM topographic study reveals the grain size and roughness varies with increase of Fe contents into NiO. The optical study reveals that the grown films are of high transparency which is about 70–85%. The estimation of various optical parameters was done, and direct energy gap found in 3.60 to 3.64 eV region for 0.0, 1, 2.5 and 5 wt% Fe:NiO films, correspondingly. The nonlinear properties were investigated and the values of \({\chi }^{1}, { \chi }^{3}\), and \({n}_{2}\) were found to be improved from 0.16 to 0.54, 1.3 × 10–13 to 1.25 × 10–11 esu and 2.67 × 10–12 to 1.70 × 10–10 esu, respectively. The enhancement in linear and nonlinear parameters owing to Fe-doping content makes the fabricated films more useful in optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.-Y. Koshihara, H. Koinuma, Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854–856 (2001)

    ADS  Google Scholar 

  2. Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: a series of oxide-diluted magnetic semiconductors and their properties. Appl. Phys. Lett. 78, 3824–3826 (2001)

    ADS  Google Scholar 

  3. Y. Jiazhen, Z. Yue, H. Wanxia, T. Mingjin, Effect of Mo-W Co-doping on semiconductor-metal phase transition temperature of vanadium dioxide film. Thin Solid Films 516, 8554–8558 (2008)

    ADS  Google Scholar 

  4. K. Ide, Y. Futakado, N. Watanabe, J. Kim, T. Katase, H. Hiramatsu, H. Hosono, T. Kamiya, Transition metal-doped amorphous oxide semiconductor thin-film phosphor, chromium-doped amorphous gallium oxide. Phys. Status Solidi (A) 216, 1800198 (2019)

    ADS  Google Scholar 

  5. A. Bahramian, M. Eyraud, F. Vacandio, V. Hornebecq, T. Djenizian, P. Knauth, Single-step electrodeposition of superhydrophobic black NiO thin films. J. Appl. Electrochem. 49, 621–629 (2019)

    Google Scholar 

  6. Y. Zhang, J. Zuo, Y. Gao, P. Li, W. He, Z. Zheng, Investigation on the nanoscale electric performance of NiO thin films by C-AFM and KPFM: the effect of Cu doping. J. Phys. Chem. Solids 131, 27–33 (2019)

    ADS  Google Scholar 

  7. K. Zrikem, G. Song, A.A. Aghzzaf, M. Amjoud, D. Mezzane, A. Rougier, UV treatment for enhanced electrochromic properties of spin coated NiO thin films. Superlattices Microstruct. 127, 35–42 (2019)

    ADS  Google Scholar 

  8. A.A. Ahmed, M. Hashim, R. Abdalrheem, M. Rashid, High-performance multicolor metal-semiconductor-metal Si photodetector enhanced by nanostructured NiO thin film. J. Alloys Compd. 798, 300–310 (2019)

    Google Scholar 

  9. N. Zhou, Y. Cheng, B. Huang, X. Liao, Effect of nonmagnetic dopants (Ag, Cu or Mg) on ferromagnetic half-metallic properties of NiO. Phys. B 557, 6–11 (2019)

    ADS  Google Scholar 

  10. M. Arif, A. Sanger, M. Shkir, A. Singh, R. Katiyar, Influence of interparticle interaction on the structural, optical and magnetic properties of NiO nanoparticles. Phys. B 552, 88–95 (2019)

    ADS  Google Scholar 

  11. P. Chandrasekhar, Y.-H. Seo, Y.-J. Noh, S.-I. Na, Room temperature solution-processed Fe doped NiOx as a novel hole transport layer for high efficient perovskite solar cells. Appl. Surf. Sci. 481, 588–596 (2019)

    ADS  Google Scholar 

  12. S. Wang, K. Wen, Y. Sun, X. Xiu, S. Teng, S. Wang, Y. He, Optical and electrical properties and simulation curves of NiO/Al/NiO transparent conductive film. Mod. Phys. Lett. B 33, 1850417 (2019)

    ADS  Google Scholar 

  13. J. Al Boukhari, L. Zeidan, A. Khalaf, R. Awad, Synthesis, characterization, optical and magnetic properties of pure and Mn, Fe and Zn doped NiO nanoparticles. Chem. Phys. 516, 116–124 (2019)

    Google Scholar 

  14. R.O. Ijeh, A.C. Nwanya, A.C. Nkele, Z. Khumalo, I.G. Madiba, A. Bashir, R. Osuji, M. Maaza, F. Ezema, Magnetic and optical properties of electrodeposited nanospherical copper doped nickel oxide thin films. Phys. E Low-dimens. Syst. Nanostruct. 113, 233 (2019)

    ADS  Google Scholar 

  15. J. Wang, J. Cai, Y.-H. Lin, C.-W. Nan, Room-temperature ferromagnetism observed in Fe-doped NiO, Appl. Phys. Lett. 87, 202501 (2005)

    ADS  Google Scholar 

  16. A. Ngo, P. Bonville, M. Pileni, Nanoparticles of: synthesis and superparamagnetic properties. Eur. Phys. J. B Condens. Matter Complex Syst. 9, 583–592 (1999)

    Google Scholar 

  17. Y.-H. Lin, R. Zhao, C.-W. Nan, M. Ying, M. Kobayashi, Y. Ooki, A. Fujimori, Enhancement of ferromagnetic properties of NiO: Fe thin film by Li doping. Appl. Phys. Lett. 89, 202501 (2006)

    ADS  Google Scholar 

  18. G. Singh, S. Shrivastava, D. Jain, S. Pandya, T. Shripathi, V. Ganesan, Effect of indium doping on zinc oxide films prepared by chemical spray pyrolysis technique. Bull. Mater. Sci. 33, 581–587 (2010)

    Google Scholar 

  19. K.O. Moura, R.J.S. Lima, A.A. Coelho, E.A. Souza-Junior, J.G.S. Duque, C.T. Meneses, Tuning the surface anisotropy in Fe-doped NiO nanoparticles. Nanoscale 6, 352–357 (2014)

    ADS  Google Scholar 

  20. T. Janusz, R. Heikes, W. Johnston, Reinvestigation of reported ferromagnetism in Lix Ni(1–x) O. J. Chem. Phys. 26, 973–974 (1957)

    ADS  Google Scholar 

  21. B. Godbole, N. Badera, S. Shrivastava, D. Jain, V. Ganesan, Investigation of Fe-doped and-undoped NiO nanocrystalline films. Surf. Rev. Lett. 14, 1113–1119 (2007)

    ADS  Google Scholar 

  22. C. Wang, X. Cui, J. Liu, X. Zhou, X. Cheng, P. Sun, X. Hu, X. Li, J. Zheng, G. Lu, Design of superior ethanol gas sensor based on Al-doped NiO nanorod-flowers. Acs Sens. 1, 131–136 (2015)

    Google Scholar 

  23. X. Li, J.-F. Tan, Y.-E. Hu, X.-T. Huang, Microwave-assisted synthesis of Fe-doped NiO nanofoams assembled by porous nanosheets for fast response and recovery gas sensors. Mater. Res. Express 4, 045015 (2017)

    ADS  Google Scholar 

  24. T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics. Adv. Energy Mater. 9, 1802995 (2019)

    Google Scholar 

  25. A. Agrawal, H.R. Habibi, R.K. Agrawal, J.P. Cronin, D.M. Roberts, C.M. Lampert, Effect of deposition pressure on the microstructure and electrochromic properties of electron-beam-evaporated nickel oxide films. Thin Solid Films 221, 239–253 (1992)

    ADS  Google Scholar 

  26. M. Guziewicz, J. Grochowski, M. Borysiewicz, E. Kaminska, J.Z. Domagala, W. Rzodkiewicz, B.S. Witkowski, K. Golaszewska, R. Kruszka, M. Ekielski, Electrical and optical properties of NiO films deposited by magnetron sputtering. Opt. Appl. 41, 431 (2011)

    Google Scholar 

  27. A. Inamdar, Y. Kim, S. Pawar, J. Kim, H. Im, H. Kim, Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors. J. Power Sources 196, 2393–2397 (2011)

    Google Scholar 

  28. X.-H. Xia, J.-P. Tu, X.-L. Wang, C.-D. Gu, X.-B. Zhao, Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material. J. Mater. Chem. 21, 671–679 (2011)

    Google Scholar 

  29. M. Shkir, V. Ganesh, S. AlFaify, I. Yahia, H. Zahran, Tailoring the linear and nonlinear optical properties of NiO thin films through Cr3+ doping. J. Mater. Sci Mater. Electron 29, 6446–6457 (2018)

    Google Scholar 

  30. J.-K. Kang, S.-W. Rhee, Chemical vapor deposition of nickel oxide films from Ni (C5H5)2/O2. Thin Solid Films 391, 57–61 (2001)

    ADS  Google Scholar 

  31. P. Puspharajah, S. Radhakrishna, A. Arof, Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique. J. Mater. Sci. 32, 3001–3006 (1997)

    ADS  Google Scholar 

  32. H. Kamal, E. Elmaghraby, S. Ali, K. Abdel-Hady, Characterization of nickel oxide films deposited at different substrate temperatures using spray pyrolysis. J. Cryst. Growth 262, 424–434 (2004)

    ADS  Google Scholar 

  33. A. Mazzi, M. Orlandi, N. Bazzanella, Y.J. Popat, L. Minati, G. Speranza, A. Miotello, Pulsed laser deposition of nickel oxide films with improved optical properties to functionalize solar light absorbing photoanodes and very low overpotential for water oxidation catalysis. Mater. Sci. Semicond. Process 97, 29–34 (2019)

    Google Scholar 

  34. V. Sandana, D. Rogers, F. Teherani, P. Bove, R. McClintock, M. Razeghi, p-Type thin film field effect transistors based on lithium-doped nickel oxide channels grown by pulsed laser deposition. Oxide-based Materials and Devices X. International Society for Optics and Photonics, (2019), p. 109191H

  35. X. Liu, X. Tan, Z. Liu, H. Ye, B. Sun, T. Shi, Z. Tang, G. Liao, Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering. Nano Energy 56, 184–195 (2019)

    Google Scholar 

  36. Kamal, A. Dikshit, A. Singh, Y.K. Prajapati, P. Chakrabarti, Characterization of Mn doped ZnO wrinkle-network nanostructured thin films deposited by sol–gel spin coating technique. SPIE 10919, 109192Q (2019)

    Google Scholar 

  37. M. Arif, M. Shkir, S. AlFaify, A. Sanger, P.M. Vilarinho, A. Singh, Linear and nonlinear optical investigations of N:ZnO/ITO thin films system for opto-electronic functions. Opt. Laser Technol. 112, 539–547 (2019)

    ADS  Google Scholar 

  38. M. Shkir, M. Arif, V. Ganesh, M.A. Manthrammel, A. Singh, S.R. Maidur, P.S. Patil, I.S. Yahia, H. Algarni, S. AlFaify, Linear, third order nonlinear and optical limiting studies on MZO/FTO thin film system fabricated by spin coating technique for electro-optic applications. J. Mater. Res. 22, 3880–3889 (2018)  

    ADS  Google Scholar 

  39. P.M. Ponnusamy, S. Agilan, N. Muthukumarasamy, T.S. Senthil, G. Rajesh, M.R. Venkatraman, D. Velauthapillai, Structural, optical and magnetic properties of undoped NiO and Fe-doped NiO nanoparticles synthesized by wet-chemical process. Mater. Charact. 114, 166–171 (2016)

    Google Scholar 

  40. Y. Hemgun, Energy band gab and optical property of Fe-doped NiO nanostructures prepared by co-precipitation method. SNRU J. Sci. Technol. 8, 149–154 (2016)

    Google Scholar 

  41. B. Toboonsung, Structure, magnetic property and energy band gap of Fe-doped NiO nanoparticles prepared by co-precipitation method. Key Engineering Materials, Trans Tech Publ, (2017), pp. 379–383

    Google Scholar 

  42. A.C. Gandhi, R. Pradeep, Y.-C. Yeh, T.-Y. Li, C.-Y. Wang, Y. Hayakawa, S.Y. Wu, Understanding the magnetic memory effect in Fe-doped NiO nanoparticles for the development of spintronic devices. ACS Appl. Nano Mater. 2, 278–290 (2018)

    Google Scholar 

  43. Y.-D. Luo, Y.-H. Lin, X. Zhang, D. Liu, Y. Shen, C.-W. Nan, Ferromagnetic behaviors in Fe-doped NiO nanofibers synthesized by electrospinning method. J. Nanomater. 2013, 4 (2013)

    Google Scholar 

  44. R. Pradeep, A.C. Gandhi, Y. Tejabhiram, I.K.M. Mathar Sahib, Y. Shimura, L. Karmakar, D. Das, S.Y. Wu, Y. Hayakawa, Magnetic anomalies in Fe-doped NiO nanoparticle. Mater Res Express 4, 103 (2017)

    Google Scholar 

  45. O. Belahssen, M. Ghougali, A. Chala, Effect of iron doping on physical properties of NiO thin films. (2018)

  46. D. Hwang, S. Lee, C. Park, Effect of roughness slope on exchange biasing in NiO spin valves. Appl. Phys. Lett. 72, 2162 (1998)

    ADS  Google Scholar 

  47. M. Ghougali, O. Belahssen, A. Dogga, Y. Aoun, Structural, electrical and optical properties of iron doped nio nanostructure thin layers. (2018). http://dspace.univ-eloued.dz/handle/123456789/2438

  48. Y.-R. Shen, The principles of nonlinear optics (Wiley-Interscience, New York, 1984), p. 575

    Google Scholar 

  49. A. Yariv, P. Yeh, Optical waves in crystals (Wiley, New York, 1984)

    Google Scholar 

  50. S.R. Marder, J.E. Sohn, G.D. Stucky, Materials for nonlinear optics chemical perspectives (American Chemical Society, Washington, 1991)

    Google Scholar 

  51. M. Weber, D. Milam, W. Smith, Nonlinear refractive index of glasses and crystals. Opt. Eng. 17, 175463 (1978)

    Google Scholar 

  52. V. Dimitrov, S. Sakka, Linear and nonlinear optical properties of simple oxides II. J. Appl. Phys. 79, 1741–1745 (1996)

    ADS  Google Scholar 

  53. C.G. Granqvist, Handbook of inorganic electrochromic materials (Elsevier, Amsterdam, 1995)

    Google Scholar 

  54. E. Shaaban, M. El-Hagary, H.S. Hassan, Y.A. Ismail, M. Emam-Ismail, A. Ali, Structural, linear and nonlinear optical properties of co-doped ZnO thin films. Appl. Phys. A 122, 20 (2016)

    ADS  Google Scholar 

  55. N. Gonçalves, J. Carvalho, Z. Lima, J. Sasaki, Size–strain study of NiO nanoparticles by X-ray powder diffraction line broadening. Mater. Lett. 72, 36–38 (2012)

    Google Scholar 

  56. A. Kremenović, Bt Jančar, M. Ristić, M. Vučinić-Vasić, J. Rogan, A. Pačevski, B. Antić, Exchange-bias and grain-surface relaxations in nanostructured NiO/Ni induced by a particle size reduction. J. Phys. Chem. C 116, 4356–4364 (2012)

    Google Scholar 

  57. S.H. Jeong, B.N. Park, D.-G. Yoo, J.-H. Boo, D. Jung, Al-ZnO thin films as transparent conductive oxides: synthesis, characterization, and application tests. J. Korean Phys. Soc. 50, 622 (2007)

    Google Scholar 

  58. K. Moura, R. Lima, C. Jesus, J. Duque, C. Meneses, Fe-doped NiO nanoparticles: synthesis, characterization, and magnetic properties. Revista mexicana de física 58, 167–170 (2012)

    Google Scholar 

  59. M. Shkir, M. Arif, V. Ganesh, M.A. Manthrammel, A. Singh, I.S. Yahia, S.R. Maidur, P.S. Patil, S. AlFaify, Investigation on structural, linear, nonlinear and optical limiting properties of sol-gel derived nanocrystalline Mg doped ZnO thin films for optoelectronic applications. J. Mol. Struct. 1173, 375–384 (2018)

    ADS  Google Scholar 

  60. S. Mohd, Z.R. Khan, M.S. Hamdy, H. Algarni, S. AlFaify, A facile microwave-assisted synthesis of PbMoO4 nanoparticles and their key characteristics analysis: a good contender for photocatalytic applications. Mater. Res. Express 5, 095032 (2018)

    ADS  Google Scholar 

  61. S. Alfaify, M. Shkir, A one pot room temperature synthesis of pure and Zn doped PbI2 nanostructures and their structural, morphological, optical, dielectric and radiation studies. J. Nanoelectr. Optoelectr. 14, 255–260 (2019)

    Google Scholar 

  62. M. Shkir, I.S. Yahia, M. Kilany, M.M. Abutalib, S. AlFaify, R. Darwish, Facile nanorods synthesis of KI:HAp and their structure-morphology, vibrational and bioactivity analyses for biomedical applications. Ceram. Int. 45, 50–55 (2019)

    Google Scholar 

  63. M. Shkir, M. Kilany, I.S. Yahia, Facile microwave-assisted synthesis of tungsten-doped hydroxyapatite nanorods: a systematic structural, morphological, dielectric, radiation and microbial activity studies. Ceram. Int. 43, 14923–14931 (2017)

    Google Scholar 

  64. M. Shkir, I.S. Yahia, S. AlFaify, M.M. Abutalib, S. Muhammad, Facile synthesis of lead iodide nanostructures by microwave irradiation technique and their structural, morphological, photoluminescence and dielectric studies. J. Mol. Struct. 1110, 83–90 (2016)

    ADS  Google Scholar 

  65. N. Mironova-Ulmane, A. Kuzmin, I. Sildos, L. Puust, J. Grabis, Magnon and phonon excitations in nanosized NiO. Latv. J. Phys. Technical Sci. 56, 61–72 (2019)

    Google Scholar 

  66. N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, M. Pärs, Raman scattering in nanosized nickel oxide NiO. J. Phys. Conference Series, IOP Publishing, (2007), p. 012039

  67. A.E. Adeoye, E. Ajenifuja, B.A. Taleatu, A. Fasasi, Rutherford backscattering spectrometry analysis and structural properties of thin films deposited by chemical spray pyrolysis. J. Mater. 2015, 1–8 (2015)

    Google Scholar 

  68. E. Erdoğan, M. Kundakçı, A. Mantarcı, InGaN thin film deposition on Si (100) and glass substrates by termionic vacuum arc. J. Phys. Conference Series, IOP Publishing, (2016), p. 012019

  69. C. Huang, M. Wang, Q. Liu, Y. Cao, Z. Deng, Z. Huang, Y. Liu, Q. Huang, W. Guo, Physical properties and growth kinetics of co-sputtered indium-zinc oxide films. Semicond. Sci. Technol. 24, 095019 (2009)

    ADS  Google Scholar 

  70. A. Perron, O. Politano, V. Vignal, Grain size, stress and surface roughness. Surf. Interface Anal. 40, 518–521 (2008)

    Google Scholar 

  71. M. Arif, M. Shkir, V. Ganesh, A. Singh, H. Algarni, S. AlFaify, A significant effect of Ce-doping on key characteristics of NiO thin films for optoelectronics facilely fabricated by spin coater. Superlattices Microstruct. 129, 230–239 (2019)

    ADS  Google Scholar 

  72. P.P. Nampi, S. Kume, Y. Hotta, K. Watari, Effect of surface roughness on grain growth and sintering of alumina. Bull. Mater. Sci. 34, 799 (2011)

    Google Scholar 

  73. A. Bera, K. Deb, K. Sarkar, B. Saha, Effect of Co doping on optical properties of chemically synthesized delafossite structured CuCrO2 thin film. AIP Conference Proceedings, AIP Publishing, (2017), p. 120010

  74. S. Jin, Y. Yang, J.E. Medvedeva, L. Wang, S. Li, N. Cortes, J.R. Ireland, A.W. Metz, J. Ni, M.C. Hersam, Tuning the properties of transparent oxide conductors. Dopant ion size and electronic structure effects on CdO-based transparent conducting oxides. Ga- and In-doped CdO thin films grown by MOCVD. Chem. Mater. 20, 220–230 (2007)

    Google Scholar 

  75. A.B.C. Ekwealor, A. Agbogu, M. Orji, Investigations into the influence of temperature on the optical properties of NiO thin films. Indian J. Pure Appl. Phys. (IJPAP) 56, 136–141 (2018)

    Google Scholar 

  76. S. Rakshit, S. Chall, S.S. Mati, A. Roychowdhury, S. Moulik, S.C. Bhattacharya, Morphology control of nickel oxalate by soft chemistry and conversion to nickel oxide for application in photocatalysis. RSC Adv. 3, 6106–6116 (2013)

    Google Scholar 

  77. B. Sasi, K. Gopchandran, Nanostructured mesoporous nickel oxide thin films. Nanotechnology 18, 115613 (2007)

    ADS  Google Scholar 

  78. R.-D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, K. Hashimoto, Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J. Phys. Chem. B 105, 1984–1990 (2001)

    Google Scholar 

  79. X. Yang, P. Gao, Z. Yang, J. Zhu, F. Huang, J. Ye, Optimizing ultrathin Ag films for high performance oxide-metal-oxide flexible transparent electrodes through surface energy modulation and template-stripping procedures. Sci. Rep. 7, srep44576 (2017)

    ADS  Google Scholar 

  80. K. Ukoba, A. Eloka-Eboka, F. Inambao, Review of nanostructured NiO thin film deposition using the spray pyrolysis technique. Renew. Sustain. Energy Rev. 82, 2900–2915 (2018)

    Google Scholar 

  81. E. Andrade, M. Miki-Yoshida, Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films 350, 192–202 (1999)

    Google Scholar 

  82. T. Taşköprü, E. Turan, M. Zor, Characterization of NiO films deposited by homemade spin coater. Int. J. Hydrog. Energy 41, 6965–6971 (2016)

    Google Scholar 

  83. M. Shkir, S. AlFaify, Tailoring the structural, morphological, optical and dielectric properties of lead iodide through Nd3+ doping. Sci. Rep. 7, 16091 (2017)

    ADS  Google Scholar 

  84. S. AlFaify, M. Shkir, A facile one pot synthesis of novel pure and Cd doped PbI2 nanostructures for electro-optic and radiation detection applications. Opt. Mater. 88, 417–423 (2019)

    ADS  Google Scholar 

  85. M. Shkir, A. Khan, A.M. El-Toni, A. Aldalbahi, I.S. Yahia, S. AlFaify, Structural, morphological, opto-nonlinear-limiting studies on Dy:PbI2/FTO thin films derived facilely by spin coating technique for optoelectronic technology. J. Phys. Chem. Solids 130, 189–196 (2019)

    ADS  Google Scholar 

  86. M. Shkir, M.T. Khan, S. AlFaify, Novel Nd-doping effect on structural, morphological, optical, and electrical properties of facilely fabricated PbI2 thin films applicable to optoelectronic devices, Appl. Nanosci. 9, 1417–1426 (2019)

    ADS  Google Scholar 

  87. R.L. Olmon, B. Slovick, T.W. Johnson, D. Shelton, S.-H. Oh, G.D. Boreman, M.B. Raschke, Optical dielectric function of gold. Phys. Rev. B 86, 235147 (2012)

    ADS  Google Scholar 

  88. M. Shkir, V. Ganesh, S. AlFaify, I.S. Yahia, Structural, linear and third order nonlinear optical properties of drop casting deposited high quality nanocrystalline phenol red thin films. J. Mater. Sci. Mater. Electron 28, 10573–10581 (2017)

    Google Scholar 

  89. M.T. Khan, M. Shkir, A. Almohammedi, S. AlFaify, Fabrication and characterization of La doped PbI2 nanostructured thin films for opto-electronic applications. Solid State Sci. 90, 95–101 (2019)

    ADS  Google Scholar 

  90. T. Girisun, S. Dhanuskodi, Linear and nonlinear optical properties of tris thiourea zinc sulphate single crystals. Cryst. Res. Technol. 44, 1297–1302 (2009)

    Google Scholar 

  91. J. Jerphagnon, S.K. Kurtz, Optical nonlinear susceptibilities: accurate relative values for quartz, ammonium dihydrogen phosphate, and potassium dihydrogen phosphate. Phys. Rev. B 1, 1739 (1970)

    ADS  Google Scholar 

  92. I. El Radaf, T.A. Hameed, T. Dahy, Synthesis, structural, linear and nonlinear optical properties of chromium doped SnO2 thin films. Ceram. Int. 45, 3072–3080 (2019)

    Google Scholar 

  93. M. Frumar, J. Jedelský, B. Frumarova, T. Wagner, M. Hrdlička, Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J. Non-Cryst. Solids 326, 399–404 (2003)

    ADS  Google Scholar 

  94. T. Chtouki, Y. El Kouari, B. Kulyk, A. Louardi, A. Rmili, H. Erguig, B. Elidrissi, L. Soumahoro, B. Sahraoui, Spin-coated nickel doped cadmium sulfide thin films for third harmonic generation applications. J. Alloy Compd. 696, 1292–1297 (2017)

    Google Scholar 

  95. H. Ticha, L. Tichy, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4, 381–386 (2002)

    Google Scholar 

  96. C.C. Wang, Empirical relation between the linear and the third-order nonlinear optical susceptibilities. Phys. Rev. B 2, 2045 (1970)

    ADS  Google Scholar 

  97. J. Wynne, Nonlinear optical spectroscopy of χ(3) in LiNbO3. Phys. Rev. Lett. 29, 650 (1972)

    ADS  Google Scholar 

  98. R. Adair, L. Chase, S.A. Payne, Nonlinear refractive index of optical crystals. Phys. Rev. B 39, 3337 (1989)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Research Centre for Advanced Materials Science at King Khalid University for sanctioning grant (RCAMS/KKU/008-19). The author A.S. is grateful to the DST, Ministry of Science and Technology, and University Grant Commission, Government of India, for the financial support. The author M.A. would like to express sincere gratitude to Prof. Ram S. Katiyar, University of Puerto Rico, Puerto Rico, USA, for the valuable encouragement and suggestions to improve the Manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohd. Shkir, Arun Singh or S. AlFaify.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkir, M., Arif, M., Ganesh, V. et al. An effect of Fe on physical properties of nanostructured NiO thin films for nonlinear optoelectronic applications. Appl. Phys. A 126, 119 (2020). https://doi.org/10.1007/s00339-020-3293-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3293-2

Keywords

Navigation