Skip to main content

Advertisement

Log in

Electrochemical performance of polymer blend electrolytes based on chitosan: dextran: impedance, dielectric properties, and energy storage study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A facile and efficient methodology was implemented in preparation of plasticized polymer electrolyte with polymer blend of chitosan and dextran from leuconostocmesenteroides impregnated with magnesium acetate using solution cast technique. A number of electrochemical techniques were applied in the characterization of the blend polymer electrolyte, such as cyclic voltammetry (CV), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and transference number measurement (TNM). Field emission scanning electron microscopy (FESEM) is used in morphological investigation of impact of plasticizer on films. The X-ray diffraction (XRD) patterns of the plasticized doped samples have shown a significant enhancement in their amorphous nature compared to the pure sample. From the CV, the capacitive behavior of the polymer blend electrolyte was proved. The decomposition potential of the polymer blend electrolyte is determined to be 1.5 V using LSV. The ion transference number (tion) was calculated and found to be 0.979, confirming dominancy of ion conduction in the polymer blend electrolyte system. It is found that ionic conductivity can be enhanced via adding glycerol as plasticizer, which supported the obtained results from both FESEM and XRD studies. To evaluate the EDLC assembly, the specific capacitance was measured as 25.377 F/g using CV curve, with energy and power densities of 7.59 Wh/kg and 520.8 W/kg, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.B. Aziz, M.H. Hamsan, R.M. Abdullah, M.F.Z. Kadir, A promising polymer blend electrolytes based on chitosan: methyl cellulose for EDLC application with high specific capacitance and energy density. Molecules 24, 2503 (2019). https://doi.org/10.3390/molecules24132503

    Article  CAS  Google Scholar 

  2. S. Orlins, D. Guan, China’s toxic informal e-waste recycling: local approaches to a global environmental problem. J. Clean. Prod. 114, 71–80 (2016). https://doi.org/10.1016/j.jclepro.2015.05.090

    Article  CAS  Google Scholar 

  3. M.N. Chai, M.I.N. Isa, Solid biopolymer electrolytes based on carboxymethyl cellulose for use in coin cell proton batteries. J. Sustain. Sci. Manag. 2017, 42–48 (2017)

    Google Scholar 

  4. P.K. Varshney, S. Gupta, Natural polymer-based electrolytes for electrochemical devices: a review. Ionics (Kiel) 17, 479–483 (2011). https://doi.org/10.1007/s11581-011-0563-1

    Article  CAS  Google Scholar 

  5. S.B. Aziz, M.A. Brza, I. Brevik, M.H. Hafiz, A.S.F.M. Asnawi, Y.M. Yusof, R.T. Abdulwahid, M.F.Z. Kadir, Blending and characteristics of electrochemical double-layer capacitor device assembled from plasticized proton ion conducting chitosan: dextran: NH4PF6 polymer electrolytes. Polymers (Basel) 12, 2103 (2020). https://doi.org/10.3390/polym12092103

    Article  CAS  Google Scholar 

  6. V.U. Gaikwad, A.S. Pande, A review of biopolymer chitosan blends in polymer system. Int. Res. J. Sci. Eng. 1 (2013) 13–16. http://oaji.net/articles/2014/731-1396631807.pdf. Accessed 24 Oct 2020

  7. S.B. Aziz, M.H. Hamsan, M.M. Nofal, S. San, R.T. Abdulwahid, S.R. Raza Saeed, M.A. Brza, M.F.Z. Kadir, S.J. Mohammed, S. Al-Zangana, From cellulose shrimp and crab shells to energy storage EDLC cells: the study of structural and electrochemical properties of proton conducting chitosan-based biopolymer blend electrolytes. Polymers (Basel) (2020). https://doi.org/10.3390/polym12071526

    Article  Google Scholar 

  8. M.F.Z. Kadir, S.R. Majid, A.K. Arof, Plasticized chitosan-PVA blend polymer electrolyte based proton battery. Electrochim. Acta. 55, 1475–1482 (2010). https://doi.org/10.1016/j.electacta.2009.05.011

    Article  CAS  Google Scholar 

  9. S.B. Aziz, M.A. Brza, E.M.A. Dannoun, M.H. Hamsan, J.M. Hadi, M.F.Z. Kadir, R.T. Abdulwahid, The study of electrical and electrochemical properties of magnesium ion conducting CS: PVA based polymer blend electrolytes: role of lattice energy of magnesium salts on EDLC performance. Molecules 25, 4503 (2020). https://doi.org/10.3390/molecules25194503

    Article  CAS  Google Scholar 

  10. P.K. Dutta, J. Duta, V.S. Tripathi, Chitin and chitosan: chemistry, properties and applications. J. Sci. Ind. Res. (India) 63, 20–31 (2004)

    CAS  Google Scholar 

  11. S.B. Aziz, M.A. Brza, H.M. Hamsan, M.F.Z. Kadir, R.T. Abdulwahid, Electrochemical characteristics of solid state double - layer capacitor constructed from proton conducting chitosan - based polymer blend electrolytes. Polym. Bull. (2020). https://doi.org/10.1007/s00289-020-03278-1

    Article  Google Scholar 

  12. R. Leones, R.C. Sabadini, J.M.S.S. Esperança, A. Pawlicka, M.M. Silva, Effect of storage time on the ionic conductivity of chitosan-solid polymer electrolytes incorporating cyano-based ionic liquids. Electrochim. Acta. 232, 22–29 (2017). https://doi.org/10.1016/j.electacta.2017.02.053

    Article  CAS  Google Scholar 

  13. N.K. Jaafar, A. Lepit, N.A. Aini, A.M.M. Ali, A. Saat, M.Z.A. Yahya, Structural and electrical properties of plasticized radiation induced chitosan grafted poly(methylmethacrylate) polymer electrolytes. Int. J. Electrochem. Sci. 9 (2014) 821–829. http://www.electrochemsci.org/papers/vol9/90200821.pdf. Accessed 24 Oct 2020

  14. A.M. Zulkifli, N.I. Aqilah Mat Said, S.B. Aziz, E.M. Ali Dannoun, S. Hisham, S. Shah, A.A. Bakar, Z.H. Zainal, H.A. Tajuddin, J.M. Hadi, M.A. Brza, S.R. Saeed, P.O. Amin, Characteristics of dye-sensitized solar cell assembled from modified chitosan-based gel polymer electrolytes incorporated with potassium iodide. Molecules 25 (2020). https://doi.org/10.3390/molecules25184115

  15. N. Vijaya, S. Selvasekarapandian, M. Sornalatha, K.S. Sujithra, S. Monisha, Proton-conducting biopolymer electrolytes based on pectin doped with NH4X (X=Cl, Br). Ionics (Kiel) 23, 2799–2808 (2017). https://doi.org/10.1007/s11581-016-1852-5

    Article  CAS  Google Scholar 

  16. S.B. Aziz, M.H. Hamsan, W.O. Karim, A.S. Marif, R.T. Abdulwahid, M.F.Z. Kadir, M.A. Brza, Study of impedance and solid-state double-layer capacitor behavior of proton (H+)-conducting polymer blend electrolyte-based CS: PS polymers. Ionics (Kiel) 26, 4635–4649 (2020). https://doi.org/10.1007/s11581-020-03578-6

    Article  CAS  Google Scholar 

  17. R. Puteh, M.Z.A. Yahya, A.M.M. Ali, M. Sulaiman, R. Yahya, Conductivity studies on chitosan-based polymer electrolytes with lithium salts. Indonesian J. Phys. 16, 17–19 (2008)

    Google Scholar 

  18. S.B. Aziz, M.H. Hamsan, R.M. Abdullah, R.T. Abdulwahid, M.A. Brza, A.S. Marif, M.F.Z. Kadir, Protonic EDLC cell based on chitosan (CS): methylcellulose (MC) solid polymer blend electrolytes. Ionics (Kiel) 26, 1829–1840 (2020). https://doi.org/10.1007/s11581-020-03498-5

    Article  CAS  Google Scholar 

  19. J.J.G. Van Soest, N. Knooren, Influence of glycerol and water content on the structure and properties of extruded starch plastic sheets during aging. J. Appl. Polym. Sci. 64, 1411–1422 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970516)64:7%3c1411::AID-APP21%3e3.0.CO;2-Y

    Article  Google Scholar 

  20. S.B. Aziz, J.M. Hadi, E.M. Elham, R.T. Abdulwahid, S.R. Saeed, A.S. Marf, W.O. Karim, M.F.Z. Kadir, The study of plasticized amorphous biopolymer blend electrolytes based on polyvinyl alcohol (PVA): chitosan with high ion conductivity for energy storage electrical double-layer capacitors (EDLC) device application. Polymers (Basel) 12, 1938 (2020). https://doi.org/10.3390/POLYM12091938

    Article  CAS  Google Scholar 

  21. S.B. Aziz, M.F.Z. Kadir, A. Zhz, Structural, morphological and electrochemical impedance study of CS: LiTf based solid polymer electrolyte: reformulated Arrhenius equation for ion transport study. Int. J. Electrochem. Sci. 11, 9228–9244 (2016). https://doi.org/10.20964/2016.11.18

    Article  CAS  Google Scholar 

  22. S.B. Aziz, O.G. Abdullah, M.A. Rasheed, H.M. Ahmed, Effect of high salt concentration (HSC) on structural, morphological, and electrical characteristics of chitosan based solid polymer electrolytes. Polymers 9(6), 187 (2017). https://doi.org/10.3390/polym9060187

    Article  CAS  Google Scholar 

  23. J. Song, E. Sahadeo, M. Noked, S.B. Lee, Mapping the challenges of magnesium battery. J. Phys. Chem. Lett. 7, 1736–1749 (2016)

    Article  CAS  Google Scholar 

  24. O. Crowther, A.C. West, Effect of electrolyte composition on lithium dendrite growth. J. Electrochem. Soc. 155, A806–A811 (2008)

    Article  CAS  Google Scholar 

  25. A.R. Polu, R. Kumar, Ionic conductivity and discharge characteristic studies of PVA-Mg (CH3COO) 2 solid polymer electrolytes. Int. J. Polym. Mater. 62, 76–80 (2012)

    Article  Google Scholar 

  26. M.F. Hassan, N.S.N. Azimi, Conductivity and transport properties of starch/glycerin-MgSO4 solid polymer electrolytes. Int. J. Adv. Appl. Sci. 6(5), 38–43 (2019)

    Article  Google Scholar 

  27. N.S. Salleh, S.B. Aziz, Z. Aspanut, M.F.Z. Kadir, Electrical impedance and conduction mechanism analysis of biopolymer electrolytes based on methyl cellulose doped with ammonium iodide. Ionics (Kiel) 22, 2157–2167 (2016). https://doi.org/10.1007/s11581-016-1731-0

    Article  CAS  Google Scholar 

  28. M.H. Hamsan, S.B. Aziz, M.F. Shukur, M.F.Z. Kadir, Protonic cell performance employing electrolytes based on plasticized methylcellulose-potato starch-NH4NO3. Ionics (Kiel) 25, 559–572 (2019). https://doi.org/10.1007/s11581-018-2827-5

    Article  Google Scholar 

  29. I. Stepniak, M. Galinski, K. Nowacki, M. Wysokowski, P. Jakubowska, V.V. Bazhenov, T. Leisegang, H. Ehrlich, T. Jesionowski, A novel chitosan/sponge chitin origin material as a membrane for supercapacitors-preparation and characterization. RSC Adv. 6, 4007–4013 (2016). https://doi.org/10.1039/c5ra22047e

    Article  CAS  Google Scholar 

  30. Z.S. Iro, C. Subramani, S.S. Dash, A brief review on electrode materials for supercapacitors. Int. J. Electrochem. Sci. 11, 10628–10643 (2016). https://doi.org/10.20964/2016.12.50

    Article  CAS  Google Scholar 

  31. M.F.Z. Kadir, M.H. Hamsan, Green electrolytes based on dextran-chitosan blend and the effect of NH4SCN as proton provider on the electrical response studies. Ionics (Kiel) 24, 2379–2398 (2018). https://doi.org/10.1007/s11581-017-2380-7

    Article  CAS  Google Scholar 

  32. S.B. Aziz, M.H. Hamsan, W.O. Karim, M.F.Z. Kadir, M.A. Brza, O.G. Abdullah, High proton conducting polymer blend electrolytes based on chitosan: dextran with constant specific capacitance and energy density. Biomolecules 9, 267 (2019). https://doi.org/10.3390/biom9070267

    Article  CAS  Google Scholar 

  33. A.S. Marf, S.B. Aziz, R.M. Abdullah, Plasticized H+ ion-conducting PVA: CS-based polymer blend electrolytes for energy storage EDLC application. J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04399-z

    Article  Google Scholar 

  34. A.S.A. Khiar, R. Puteh, A.K. Arof, Conductivity studies of a chitosan-based polymer electrolyte. Phys. B 373, 23–27 (2006). https://doi.org/10.1016/j.physb.2005.10.104

    Article  CAS  Google Scholar 

  35. J. Malathi, M. Kumaravadivel, G.M. Brahmanandhan, M. Hema, R. Baskaran, S. Selvasekarapandian, Structural, thermal and electrical properties of PVA-LiCF3SO3 polymer electrolyte. J. Non. Cryst. Solids. 356, 2277–2281 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.08.011

    Article  CAS  Google Scholar 

  36. S.B. Aziz, Z.H.Z. Abidin, A.K. Arof, Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosan-silver triflate electrolyte membrane. Express Polym. Lett. 4, 300–310 (2010). https://doi.org/10.3144/expresspolymlett.2010.38

    Article  CAS  Google Scholar 

  37. S.B. Aziz, The mixed contribution of ionic and electronic carriers to conductivity in chitosan based solid electrolytes mediated by CuNt salt. J. Inorg. Organomet. Polym. Mater. 28, 1942–1952 (2018). https://doi.org/10.1007/s10904-018-0862-3

    Article  CAS  Google Scholar 

  38. A.R. Polu, R. Kumar, AC impedance and dielectric spectroscopic studies of Mg2+ ion conducting PVA-PEG blended polymer electrolytes. Bull. Mater. Sci. 34, 1063–1067 (2011). https://doi.org/10.1007/s12034-011-0132-2

    Article  CAS  Google Scholar 

  39. N.N. Mobarak, A. Ahmad, M.P. Abdullah, N. Ramli, M.Y.A. Rahman, Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte. Electrochim. Acta. 92, 161–167 (2013). https://doi.org/10.1016/j.electacta.2012.12.126

    Article  CAS  Google Scholar 

  40. M.F. Shukur, R. Ithnin, M.F.Z. Kadir, Ionic conductivity and dielectric properties of potato starch-magnesium acetate biopolymer electrolytes: the effect of glycerol and 1-butyl-3-methylimidazolium chloride. Ionics (Kiel) 22, 1113–1123 (2016). https://doi.org/10.1007/s11581-015-1627-4

    Article  CAS  Google Scholar 

  41. M.H. Hamsan, S.B. Aziz, M.M. Nofal, M.A. Brza, R.T. Abdulwahid, J.M. Hadi, W.O. Karim, M.F.Z. Kadir, Characteristics of EDLC device fabricated from plasticized chitosan: MgCl2 based polymer electrolyte. J. Mater. Res. Technol. 9, 10635–10646 (2020). https://doi.org/10.1016/j.jmrt.2020.07.096

    Article  CAS  Google Scholar 

  42. S.G. Rathod, R.F. Bhajantri, V. Ravindrachary, P.K. Pujari, T. Sheela, Ionic conductivity and dielectric studies of LiClO4 doped poly (vinylalcohol) (PVA)/chitosan (CS) composites. J. Adv. Dielectr. 04, 1450033 (2014). https://doi.org/10.1142/s2010135x14500337

    Article  Google Scholar 

  43. A.S. Marf, R.M. Abdullah, S.B. Aziz, Structural, morphological, electrical and electrochemical properties of PVA: CS-based proton-conducting polymer blend electrolytes. Membranes (Basel) 10, 71 (2020). https://doi.org/10.3390/membranes10040071

    Article  CAS  Google Scholar 

  44. F. Göktepe, S.Ü. Çelik, A. Bozkurt, Preparation and the proton conductivity of chitosan/poly (vinyl phosphonic acid) complex polymer electrolytes. J. Non. Cryst. Solids. 354, 3637–3642 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.03.023

    Article  CAS  Google Scholar 

  45. Y. Wan, K.A.M. Creber, B. Peppley, V. Tam Bui, Chitosan-based solid electrolyte composite membranes. I. Preparation and characterization. J. Memb. Sci. 280, 666–674 (2006). https://doi.org/10.1016/j.memsci.2006.02.024

    Article  CAS  Google Scholar 

  46. M.H. Hamsan, M.F. Shukur, S.B. Aziz, M.F.Z. Kadir, Dextran from leuconostocmesenteroides-doped ammonium salt-based green polymer electrolyte. Bull. Mater. Sci. 42, 42–57 (2019). https://doi.org/10.1007/s12034-019-1740-5

    Article  CAS  Google Scholar 

  47. S.B. Aziz, R.M. Abdullah, Crystalline and amorphous phase identification from the tanδ relaxation peaks and impedance plots in polymer blend electrolytes based on [CS: AgNt]x: PEO(x–1) (10 ≤ x ≤ 50). Electrochim. Acta. 285, 30–46 (2018). https://doi.org/10.1016/j.electacta.2018.07.233

    Article  CAS  Google Scholar 

  48. S.B. Aziz, M.A. Rasheed, A.M. Hussein, H.M. Ahmed, Fabrication of polymer blend composites based on [PVA-PVP](1–x):(Ag2S)x (0.01 ≤ x ≤ 0.03) with small optical band gaps: structural and optical properties. Mater. Sci. Semicond. Process 71, 197–203 (2017). https://doi.org/10.1016/j.mssp.2017.05.035

    Article  CAS  Google Scholar 

  49. S.B. Aziz, M.H. Hamsan, M.A. Brza, M.F.Z. Kadir, S.K. Muzakir, R.T. Abdulwahid, Effect of glycerol on EDLC characteristics of chitosan: methylcellulose polymer blend electrolytes. J. Mater. Res. Technol. 9, 8355–8366 (2020). https://doi.org/10.1016/j.jmrt.2020.05.114

    Article  CAS  Google Scholar 

  50. R.M. Hodge, G.H. Edward, G.P. Simon, Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polymer (Guildf) 37, 1371–1376 (1996). https://doi.org/10.1016/0032-3861(96)81134-7

    Article  CAS  Google Scholar 

  51. N. Chudpooti, V. Doychinov, B. Hong, P. Akkaraekthalin, I. Robertson, N. Somjit, Multi-modal millimeter-wave sensors for plastic polymer material characterization. J. Phys. D. Appl. Phys. 51, 31 (2018). https://doi.org/10.1088/1361-6463/aac818

    Article  CAS  Google Scholar 

  52. A.N. Al-Omari, K.L. Lear, Dielectric characteristics of spin-coated dielectric films using on-wafer parallel-plate capacitors at microwave frequencies. IEEE Trans. Dielectr. Electr. Insul. 12, 1151–1161 (2005). https://doi.org/10.1109/TDEI.2005.1561795

    Article  CAS  Google Scholar 

  53. S.J. Park, S.A.N. Yoon, Y.H. Ahn, Dielectric constant measurements of thin films and liquids using terahertz metamaterials. RSC Adv. 6, 69381–69386 (2016). https://doi.org/10.1039/c6ra11777e

    Article  CAS  Google Scholar 

  54. L. Anderson, M. Jacob, Microwave characterization of a novel, environmentally friendly, plasma polymerized organic thin film. Phys. Procedia. 14, 87–90 (2011). https://doi.org/10.1016/j.phpro.2011.05.017

    Article  CAS  Google Scholar 

  55. S.B. Aziz, M.F.Z. Kadir, M.H. Hamsan, H.J. Woo, M.A. Brza, Development of polymer blends based on PVA: POZ with low dielectric constant for microelectronic applications. Sci. Rep. 9, 1–12 (2019). https://doi.org/10.1038/s41598-019-49715-8

    Article  CAS  Google Scholar 

  56. J.M. Hadi, S.B. Aziz, M.S. Mustafa, M.A. Brza, M.H. Hamsan, M.F.Z. Kadir, H.O. Ghareeb, S.A. Hussein, Electrochemical impedance study of proton conducting polymer electrolytes based on PVC doped with thiocyanate and plasticized with glycerol. Int. J. Electrochem. Sci. 15, 4671–4683 (2020). https://doi.org/10.20964/2020.05.34

    Article  CAS  Google Scholar 

  57. A.S.F.M. Asnawi, S.B. Aziz, M.M. Nofal, M.H. Hamsan, M.A. Brza, Y.M. Yusof, R.T. Abdulwahid, S.K. Muzakir, M.F.Z. Kadir, Glycerolized Li+ ion conducting chitosan-based polymer electrolyte for energy storage EDLC device applications with relatively high energy density. Polymers (Basel) 12, 1–19 (2020). https://doi.org/10.3390/polym12061433

    Article  CAS  Google Scholar 

  58. O.V. Khutoryanskaya, V.V. Khutoryanskiy, R.A. Pethrick, Characterisation of blends based on hydroxyethylcellulose and maleic acid-alt-methyl vinyl ether. Macromol. Chem. Phys. 206, 1497–1510 (2005). https://doi.org/10.1002/macp.200500069

    Article  CAS  Google Scholar 

  59. H.M. Zidan, N.A. El-Ghamaz, A.M. Abdelghany, A. Lotfy, Structural and electrical properties of PVA/PVP blend doped with methylene blue dye. Int. J. Electrochem. Sci. 11, 9041–9056 (2016). https://doi.org/10.20964/2016.11.08

    Article  CAS  Google Scholar 

  60. S.B. Aziz, Z.H.Z. Abidin, Ion-transport study in nanocomposite solid polymer electrolytes based on chitosan: electrical and dielectric analysis. J. Appl. Polym. Sci. 132, 1–10 (2015). https://doi.org/10.1002/app.41774

    Article  CAS  Google Scholar 

  61. S.B. Aziz, S.M. Mamand, The Study of dielectric properties and conductivity relaxation of ion conducting chitosan: NaTf based solid electrolyte. Int. J. Electrochem. Sci. 13, 10274–10288 (2018). https://doi.org/10.20964/2018.11.05

    Article  CAS  Google Scholar 

  62. Z. Chen, J. Pei, R. Li, Study of the preparation and dielectric property of PP/SMA/PVDF blend material. Appl. Sci. 7, 389 (2017). https://doi.org/10.3390/app7040389

    Article  CAS  Google Scholar 

  63. C.S. Ramya, S. Selvasekarapandian, G. Hirankumar, T. Savitha, P.C. Angelo, Investigation on dielectric relaxations of PVP-NH4SCN polymer electrolyte. J. Non. Cryst. Solids. 354, 1494–1502 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.08.038

    Article  CAS  Google Scholar 

  64. L. Fan, Z. Dang, G. Wei, C.W. Nan, M. Li, Effect of nanosizedZnO on the electrical properties of (PEO)16LiClO4 electrolytes. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 99, 340–343 (2003). https://doi.org/10.1016/S0921-5107(02)00487-7

    Article  CAS  Google Scholar 

  65. M. Ahmad, M.K. Ahmad, N. Nafarizal, C.F. Soon, A.B. Suriani, A. Mohamed, M.H. Mamat, Adsorption effect of oxygen on ZnO Nanowires (100 nm) leading towards pronounced edge effects and voltage enhancement. Bull. Mater. Sci. 7, 267 (2020). https://doi.org/10.1088/2053-1591/ab9d51

    Article  CAS  Google Scholar 

  66. P.A.R.D. Jayathilaka, M.A.K.L. Dissanayake, I. Albinsson, B.E. Mellander, Dielectric relaxation, ionic conductivity and thermal studies of the gel polymer electrolyte system PAN/EC/PC/LiTFSI. Solid State Ionics 156, 179–195 (2003). https://doi.org/10.1016/S0167-2738(02)00616-1

    Article  CAS  Google Scholar 

  67. P. Khatri, B. Behera, V. Srinivas, R.N.P. Choudhary, Structural and dielectric properties of Ba3V2O8 ceramics. Curr. Appl. Phys. 9, 515–519 (2009). https://doi.org/10.1016/j.cap.2008.05.002

    Article  Google Scholar 

  68. S.B. Aziz, W.O. Karim, M.A. Brza, R.T. Abdulwahid, S.R. Saeed, S. Al-Zangana, M.F.Z. Kadir, Ion transport study in CS: POZ based polymer membrane electrolytes using Trukhan model. J. Mol. Sci. Int. (2019). https://doi.org/10.3390/ijms20215265

    Article  Google Scholar 

  69. B. Louati, F. Hlel, K. Guidara, Ac electrical properties and dielectric relaxation of the new mixed crystal (Na0.8Ag0.2)2PbP2O7. J. Alloys Compd. 486, 299–303 (2009). https://doi.org/10.1016/j.jallcom.2009.06.148

    Article  CAS  Google Scholar 

  70. S.B. Aziz, S. Al-Zangana, M.A. Brza, S.R. Saeed, R.T. Abdulwahid, M.F.Z. Kadir, Study of dielectric properties and ion transport parameters in Chitosan-Barium Nitrate based solid polymer electrolytes. Int. J. Electrochem. Sci. 14, 11580–11595 (2019). https://doi.org/10.20964/2019.12.39

    Article  CAS  Google Scholar 

  71. S.B. Aziz, Study of electrical percolation phenomenon from the dielectric and electric modulus analysis. Bull. Mater. Sci. 38, 1597–1602 (2015). https://doi.org/10.1007/s12034-015-0978-9

    Article  CAS  Google Scholar 

  72. A.S. Ayesh, Dielectric relaxation and thermal stability of polycarbonate doped with MnCl2 salt. J. Thermoplast. Compos. Mater. 21, 309–322 (2008). https://doi.org/10.1177/0892705708089475

    Article  CAS  Google Scholar 

  73. S.B. Aziz, O.G. Abdullah, S. Al-zangana, Solid polymer electrolytes based on chitosan: NH4Tf modified by various amounts of TiO2 filler and its electrical and dielectric characteristics. Int. J. Electrochem. Sci. 14, 1909–1925 (2019). https://doi.org/10.20964/2019.02.31

    Article  CAS  Google Scholar 

  74. M.A. Brza, S.B. Aziz, H. Anuar, F. Ali, M.H. Hamsan, M.F.Z. Kadir, R.T. Abdulwahid, Metal framework as a novel approach for the fabrication of electric double layer capacitor device with high energy density using plasticized poly (vinyl alcohol): ammonium thiocyanate based polymer electrolyte. Arab. J. Chem. 13, 7247–7263 (2020). https://doi.org/10.1016/j.arabjc.2020.08.006

    Article  CAS  Google Scholar 

  75. M.S.A. Rani, A. Ahmad, N.S. Mohamed, Influence of nano-sized fumed silica on physicochemical and electrochemical properties of cellulose derivatives-ionic liquid biopolymer electrolytes. Ionics (Kiel) 24, 807–814 (2018). https://doi.org/10.1007/s11581-017-2235-2

    Article  CAS  Google Scholar 

  76. M.A. Ramlli, M.I.N. Isa, Structural and ionic transport properties of protonic conducting solid biopolymer electrolytes based on carboxymethyl cellulose doped with ammonium fluoride. J. Phys. Chem. B 120, 11567–11573 (2016). https://doi.org/10.1021/acs.jpcb.6b06068

    Article  CAS  Google Scholar 

  77. M.A. Brza, S.B. Aziz, H. Anuar, E.M.A. Dannoun, F. Ali, R.T. Abdulwahid, S. Al-Zangana, M.F.Z. Kadir, The study of EDLC device with high electrochemical performance fabricated from proton ion conducting PVA-based polymer composite electrolytes plasticized with glycerol. Polymers (Basel) 12, 1896 (2020). https://doi.org/10.3390/POLYM12091896

    Article  CAS  Google Scholar 

  78. J.M. Hadi, S.B. Aziz, M.M. Nofal, S.A. Hussen, M.H. Hamsan, M.A. Brza, R.T. Abdulwahid, M.F.Z. Kadir, H.J. Woo, Electrical, dielectric property and electrochemical performances of plasticized silver ion-conducting chitosan-based polymer nanocomposites. Membranes (Basel) 10, 1–22 (2020). https://doi.org/10.3390/membranes10070151

    Article  CAS  Google Scholar 

  79. L.S. Ng, A.A. Mohamad, Effect of temperature on the performance of proton batteries based on chitosan-NH4NO3-EC membrane. J. Memb. Sci. 325, 653–657 (2008). https://doi.org/10.1016/j.memsci.2008.08.029

    Article  CAS  Google Scholar 

  80. M.F.Z. Kadir, A.K. Arof, Application of PVA-chitosan blend polymer electrolyte membrane in electrical double layer capacitor. Mater. Res. Innov. 15, s217–s220 (2011). https://doi.org/10.1179/143307511X13031890749299

    Article  Google Scholar 

  81. S.B. Aziz, M.A. Brza, M.H. Hamsan, M.F.Z. Kadir, S.K. Muzakir, R.T. Abdulwahid, Effect of ohmic-drop on electrochemical performance of EDLC fabricated from PVA: dextran: NH4I based polymer blend electrolytes. J. Mater. Res. Technol. 9, 3734–3745 (2020). https://doi.org/10.1016/j.jmrt.2020.01.110

    Article  CAS  Google Scholar 

  82. W. Zhu, X. Ou, Z. Lu, K. Chen, Y. Ling, H. Zhang, Enhanced performance of hierarchical CuS clusters applying TRGO as conductive carrier for supercapacitors. J. Mater. Sci. Mater. Electron. 30, 5760–5770 (2019). https://doi.org/10.1007/s10854-019-00872-6

    Article  CAS  Google Scholar 

  83. S.B. Aziz, M.H. Hamsan, M.A. Brza, M.F.Z. Kadir, R.T. Abdulwahid, H.O. Ghareeb, H.J. Woo, Fabrication of energy storage EDLC device based on CS: PEOpolymer blend electrolytes with high Li+ ion transference number. Results Phys. 15, 102584 (2019). https://doi.org/10.1016/j.rinp.2019.102584

    Article  Google Scholar 

  84. S.B. Aziz, M.A. Brza, K. Mishra, M.H. Hamsan, W.O. Karim, R.M. Abdullah, M.F.Z. Kadir, R.T. Abdulwahid, Fabrication of high performance energy storage EDLC device from proton conducting methylcellulose: dextran polymer blend electrolytes. J. Mater. Res. Technol. 9, 1137–1150 (2020). https://doi.org/10.1016/j.jmrt.2019.11.042

    Article  CAS  Google Scholar 

  85. N.F.A. Fattah, H.M. Ng, Y.K. Mahipal, A. Numan, S. Ramesh, K. Ramesh, An approach to solid-state electrical double layer capacitors fabricated with graphene oxide-doped, ionic liquid-based solid copolymer electrolytes. Materials (Basel) 9, 450 (2016). https://doi.org/10.3390/ma9060450

    Article  CAS  Google Scholar 

  86. A.S.F.M. Asnawi, S.B. Aziz, M.M. Nofal, Y.M. Yusof, I. Brevik, M.H. Hamsan, M.A. Brza, R.T. Abdulwahid, M.F.Z. Kadir, Metal complex as a novel approach to enhance the amorphous phase and improve the EDLC performance of plasticized proton conducting chitosan-based polymer electrolyte. Membranes (Basel) 10, 1–20 (2020). https://doi.org/10.3390/membranes10060132

    Article  CAS  Google Scholar 

  87. G.P. Pandey, Y. Kumar, S.A. Hashmi, Ionic liquid incorporated PEO based polymer electrolyte for electrical double layer capacitors: a comparative study with lithium and magnesium systems. Solid State Ionics 190, 93–98 (2011). https://doi.org/10.1016/j.ssi.2011.03.018

    Article  CAS  Google Scholar 

  88. C. Costentin, T.R. Porter, J.M. Savéant, How do pseudocapacitors store energy? Theoretical analysis and experimental illustration. ACS Appl. Mater. Interfaces 9, 8649–8658 (2017). https://doi.org/10.1021/acsami.6b14100

    Article  CAS  Google Scholar 

  89. Y.M. Yusof, N.A. Majid, R.M. Kasmani, H.A. Illias, M.F.Z. Kadir, The effect of plasticization on conductivity and other properties of starch/chitosan blend biopolymer electrolyte incorporated with ammonium iodide. Mol. Cryst. Liq. Cryst. 603, 73–88 (2014). https://doi.org/10.1080/15421406.2014.966261

    Article  CAS  Google Scholar 

  90. H.J. Woo, C.W. Liew, S.R. Majid, A.K. Arof, Poly (ε-caprolactone)-based polymer electrolyte for electrical double-layer capacitors. High Perform. Polym. 26, 637–640 (2014). https://doi.org/10.1177/0954008314542168

    Article  CAS  Google Scholar 

  91. K.A. Francis, C.-W. Liew, S. Ramesh, K. Ramesh, S. Ramesh, Ionic liquid enhanced magnesium-based polymer electrolytes for electrical double-layer capacitors. Ionics 22(6), 919–925 (2015)

    Article  Google Scholar 

  92. M.Y. Chong, A. Numan, C.-W. Liew, H.M. Ng, K. Ramesh, S. Ramesh, Enhancing the performance of green solid-state electric double-layer capacitor incorporated with fumed silica nanoparticles. J. Phys. Chem. Solids 117, 194–203 (2018)

    Article  CAS  Google Scholar 

  93. K.H. Teoh, C.-S. Lim, C.-W. Liew, S. Ramesh, Electric double-layer capacitors with corn starch-based biopolymer electrolytes incorporating silica as filler. Ionics 21, 2061–2068 (2015). https://doi.org/10.1007/s11581-014-1359-x

    Article  CAS  Google Scholar 

  94. K.A. Francis, C.-W. Liew, S. Ramesh, K. Ramesh, Effect of ionic liquid 1-butyl-3-methylimidazolium bromide on ionic conductivity of poly (ethyl methacrylate) based polymer electrolytes. Mater. Express 6, 252–258 (2016). https://doi.org/10.1166/mex.2016.1307

    Article  CAS  Google Scholar 

  95. N. Farah, H. Ng, A. Numan, C.-W. Liew, N. Latip, K. Ramesh, S. Ramesh, Solid polymer electrolytes based on poly (vinyl alcohol) incorporated with sodium salt and ionic liquid for electrical double layer capacitor. Mater. Sci. Eng. B 251, 114468 (2019). https://doi.org/10.1016/j.mseb.2019.114468

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this study from the Ministry of Higher Education and Scientific Research-Kurdish National Research Council (KNRC), Kurdistan Regional Government/Iraq, and University of Malaya. The financial support from the University of Sulaimani, Prince Sultan University, and Komar University of Science and Technology are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rebar T. Abdulwahid or Shujahadeen B. Aziz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulwahid, R.T., Aziz, S.B., Brza, M.A. et al. Electrochemical performance of polymer blend electrolytes based on chitosan: dextran: impedance, dielectric properties, and energy storage study. J Mater Sci: Mater Electron 32, 14846–14862 (2021). https://doi.org/10.1007/s10854-021-06038-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06038-7

Navigation