Skip to main content
Log in

Study of electrical percolation phenomenon from the dielectric and electric modulus analysis

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Chitosan : AgI solid polymer composite films have been prepared by the well-known solution cast technique. Electrical impedance spectroscopy was used to investigate the electrical percolation threshold phenomenon in this work. A wide dispersion can be seen in dielectric constant spectra at low frequencies. The dielectric constant at selected frequencies as a function of AgI concentration indicates the occurrence of electrical percolation threshold via the appearance of two distinguishable regions. The behaviour of dielectric constant and DC conductivity vs. AgI concentration are almost the same at low and high filler concentrations. The steep increase of dielectric constant and DC conductivity from 5 to 10 wt% of AgI was observed and a plateau was achieved from 10 to 20 wt% of AgI. The pattern of real part of electric modulus (M′) at selected frequencies is similar to dielectric constant. The existence of distinct peaks in M′′ spectra with no corresponding peaks in ε′′ spectra indicated that ionic and polymer segmental motions are strongly coupled. Argand plots of M′′ vs. M′ was used to detect the relaxation type process. The Argand plots at different temperatures exhibit incomplete semicircular arc with a diameter below the real axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Wang Y, Gao X-H, Li H-K, Li H-J, Liu H-G and Guo H-X 2009, J. Macromol. Sci. Part A: Pure Appl. Chem. 46 461

    Article  Google Scholar 

  2. Samir M A S, Alloin F and Dufresne A 2006 Compos. Interfaces 13 545

    Article  Google Scholar 

  3. Psarras G C, Manolakaki E and Tsangaris G M 2003 Composites: Part A 34 1187

    Article  Google Scholar 

  4. Kumar J, Rodrigues S J and Kumar B 2010 J. Power Sources 195 327

    Article  Google Scholar 

  5. Kumar B and Fellner J P 2003 J. Power Sources 123 132

    Article  Google Scholar 

  6. Bhargav P B, Sarada B A, Sharma A K and Rao V V R N 2010 J. Macromol. Sci. Part A: Pure Appl. Chem. 47 131

    Article  Google Scholar 

  7. Mohan V M, Bhargav P B, Raja V, Sharma A K and Rao V V R N 2007 Soft Mater. 5 33

    Article  Google Scholar 

  8. Bauhofer W and Kovacs J Z 2009 Compos. Sci. Technol. 69 1486

    Article  Google Scholar 

  9. Aziz S B and Abidin Z H Z 2013 J. Soft Matter Article ID 323868, p 8

  10. Aziz S B, Abidin Z H Z and Arof A K 2010 Express Polym. Lett. 4 300

    Article  Google Scholar 

  11. Aziz S B and Abidin Z H Z 2015 J. Appl. Polym. Sci. 132 41774

    Article  Google Scholar 

  12. Kumar B and Rodrigues S J 2004 Solid State Ion 167 91

    Article  Google Scholar 

  13. Tchmutin I A, Ponomarenko A T, Krinichnaya E P, Kozub G I and Efimov O N 2003 Carbon 41 1391

    Article  Google Scholar 

  14. Psarras G C 2006 Composites: Part A 37 1545

    Article  Google Scholar 

  15. Li Q, Xue Q, Hao L, Gao X and Zheng Q 2008 Compos. Sci. Technol. 68 2290

    Article  Google Scholar 

  16. George S and Sebastian M T 2009 Compos. Sci. Technol. 69 1298

    Article  Google Scholar 

  17. Aziz S B and Abidin Z H Z 2014 Mater. Chem. Phys. 144 280

    Article  Google Scholar 

  18. Thomas P, Varughese K T, Dwarakanath K and Varma K B R 2010 Compos. Sci. Technol. 70 539

    Article  Google Scholar 

  19. Han M S, Lee Y K, Lee H S, Yun Ch H and Kim W N 2009 Chem. Eng. Sci. 64 4649

    Article  Google Scholar 

  20. Ravi M, Pavani Y, Bhavani S, Sharma A K and Rao V V R N 2012 Int. J. Polym. Mater. 61 309

    Article  Google Scholar 

  21. Aziz S B, Abidin Z H Z and Arof A K 2010 Physica B: Condens. Matter 405 4429

    Article  Google Scholar 

  22. Aziz S B, Abidin Z H Z and Kadir M F Z 2015 Phys. Scr. 90 035808

    Article  Google Scholar 

  23. Okutan M and Şentürk E 2008 J. Non-Cryst. Solids 354 1526

    Article  Google Scholar 

  24. Agrawal S L, Singh M, Asthana N, Dwivedi M M and Pandey K 2011 Int. J. Polym. Mater. 60 276

    Article  Google Scholar 

  25. Pradhan D K, Choudhary R N P and Samantaray B K 2008 Int. J. Electrochem. Sci. 3 597

    Google Scholar 

  26. Kanchan D K, Padmasree K P, Panchal H R and Kulkarni A R 2004 Ceram. Int. 30 1655

    Article  Google Scholar 

  27. Ayesh A S 2008 J. Thermoplast. Compos. Mater. 21 309

    Article  Google Scholar 

Download references

Acknowledgement

I gratefully acknowledge the financial support from the University of Sulaimani, Faculty of Science and Science Education, School of Science-Department of Physics, for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SHUJAHADEEN B AZIZ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AZIZ, S.B. Study of electrical percolation phenomenon from the dielectric and electric modulus analysis. Bull Mater Sci 38, 1597–1602 (2015). https://doi.org/10.1007/s12034-015-0978-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-0978-9

Keywords

Navigation