Skip to main content
Log in

Natural polymer-based electrolytes for electrochemical devices: a review

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Polymer electrolytes are an important component of many electrochemical devices. Researchers have carried out a significant work for the development of polymer electrolytes. This paper reviews the recent developments in the area of polymer electrolytes using aqueous and nonaqueous-based natural polymers for developing a cheaper, ecofriendly, biodegradable, and widely used electrolytes as a substitute for existing synthetic polymer electrolytes. This paper also encompasses the merits and demerits of the different natural polymers used by the researcher. There is a scope to develop a nonaqueous-based natural polymer electrolyte as an alternate for synthetic polymer electrolyte for batteries and other electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Nature 514:359–367

    Article  Google Scholar 

  2. Christie M, Lilley SJ, Staunton E, Andreev YG, Bruce PG (2005) Nature 433:50–57

    Article  CAS  Google Scholar 

  3. Gray FM (1991) Solid polymer electrolytes fundamentals and technological applications, VCH

  4. Dygas JR, Misztal-Faraj B, Florjanczyk Z, Krok F, Marzantowicz M, Zygadlo-Monikowska E (2003) J Solid State Ionics 157:249–256

    Article  CAS  Google Scholar 

  5. Kovac M, Gaberscek M, Gradadolnik J (1998) Electrochim Acta 44:863–868

    Article  CAS  Google Scholar 

  6. Armand MB, Chabagno JM, Duclot MJ (1979) In: Vashista P, Shenoy GK (eds) Fast ion transport in solids. Elsevier, North Holland, p 131

    Google Scholar 

  7. Bertheir C, Gorecki W, Minier M, Armand MB, Chanbagno JM, Rigaud P (1983) Solid State Ionics 11:91–98

    Article  Google Scholar 

  8. Agnihotri SA, Varshney P, Sekhon SS (1999) Electrochmi Acta 44:3121–3126

    Article  Google Scholar 

  9. Johansson P, Edvardsson M, Adebahr J, Jacobsson P (2003) J Phys Chem B 107:12622–12627

    Article  CAS  Google Scholar 

  10. Ahamad S, Bohidar HB, Ahmad S, Agnihotri SA (2006) Polymer 47:3583–3590

    Article  Google Scholar 

  11. Stephan AM, Nahm KS (2006) 47:5952–5960

  12. Tarascon JM, Gozdz AZ, Schmutz C, Shokoohi F, Warren PC (1996) Solid State Ionics 86/88:49–54

    Article  Google Scholar 

  13. Song JY, Wang YY, Wan CC (2000) J Electrochem Soc 147:3219–3227

    Article  CAS  Google Scholar 

  14. Lewera A, Zukowska G, Miecznikowski K, Chojak M, Wieczorek KPJ (2005) Anal Chim Acta 536:275–282

    Article  CAS  Google Scholar 

  15. Raducha D, Wieczarek W, Flarjanczyk Z, Stevens JR (1996) J Phys Chem 100:20126–20133

    Article  CAS  Google Scholar 

  16. Vasilopoulou M, Raptis I, Argitis P, Aspiotis I, Davaroglou D (2006) Microelectron Eng 83:1514–1520

    Article  Google Scholar 

  17. Dilip K, Pradhan RNP, Choudhary K, Samantaray BK (2008) J Electrochem Sci 3:597–604

    Google Scholar 

  18. Tsutsumi H, Matsuo A, Onimura K, Oishi T (1998) Electrochem, Solid–State Lett 244

  19. Kumar M, Sekhon SS (2002) J Eur Polym 38:1297–1304

    Article  CAS  Google Scholar 

  20. Croce F, Appetecchi GB, Perci L, Scrosati B (1998) Nature 394:456–458

    Article  CAS  Google Scholar 

  21. Appetecchi GB, Croce F, Persi L, Ronci F, Scrosati B (2000) J Electrochem Soc 147:4448–4456

    Article  CAS  Google Scholar 

  22. Bronstein LM, Karlinsey RL, Ritter K, Joo CG, Stein B, Zw JW (2004) J Mater Chem 14:1812–1817

    Article  CAS  Google Scholar 

  23. Itoh T, Miyamura Y, Iohikawa Y, Uno T, Kubo M, Yamamoto O (2003) J Power Sources 119/121:403–408

    Article  Google Scholar 

  24. Kaarup SS, West K, Christiansen Zachau B (1980) Solid State Ionics 28/30:375–380

    Google Scholar 

  25. Wieczorek W (1992) Mater Sci Eng B 15:108–114

    Article  Google Scholar 

  26. Capuoano F, Croce F, Scrosati B (1991) J Electrochem Soc 138:1918–1926

    Article  Google Scholar 

  27. Appetecchi GB, Croce F, Persi L, Ronci F, Sorosati B (2000) Electrochim Acta 45:1481–1490

    Article  CAS  Google Scholar 

  28. Kumar B, Fellner JP (2003) J Power Sources 123:132–138

    Article  CAS  Google Scholar 

  29. Miyake N, Wainright JS, Savinell RF (2001) J Electrochem Soc 148:A898–A905

    Article  CAS  Google Scholar 

  30. Adjemian KT, Lee SJ, Srinivasan S, Benziger J, Bocarsly AB (2002) J Electrochem Soc 149:A256–A262

    Article  CAS  Google Scholar 

  31. Watanabe M, Uchida H, Seki Y, Emori M, Stonehart P (1996) J Electrochem Soc 143:3847–3855

    Article  CAS  Google Scholar 

  32. Capuano F, Croce F, Scrosati B (1991) J Electrochem Soc 138:1918–1922

    Article  CAS  Google Scholar 

  33. Meneghetti P, Qutubuddin S, Webber A (2004) Electrchim Acta 49:4923–4931

    Article  CAS  Google Scholar 

  34. Kumar B (2004) J Power Sources 135:215–231

    Article  CAS  Google Scholar 

  35. Adehar J, Byrne N, Forsyth M, Mac Farlane DR, Jacobsson P (2003) Electrochim Acta 48:2099–2103

    Article  Google Scholar 

  36. Agnihotry SA, Ahmad S, Gupta D, Ahmad S (2004) Electrochim Acta 49:2343–2349

    Article  CAS  Google Scholar 

  37. Ahmad S, Deepa M, Agnihotry SA (2008) Sol Energy Mater Sol Cell 92:184–189

    Article  CAS  Google Scholar 

  38. Ahmad S, Ahmad A, Agnihotry SA (2007) Bull Mater Sci 30:31–36

    Article  CAS  Google Scholar 

  39. Ahmad S, Ahmad S, Agnihotry SA (2008) J Appl Polym Sci 107:3042–3048

    Article  CAS  Google Scholar 

  40. Ansari SA, Gafur RB, Jones K, Espada LA, Polefka TG (2011) J Appl Polym Sci 120(4):2434–2439

    Article  Google Scholar 

  41. Jyothi AN (2010) Compos Interfaces 17(2–3):165–174

    Article  CAS  Google Scholar 

  42. Wang J, Wang Y, Tang Q, Wang Y, Chang Y, Zhao Q, Xue C (2010) J Ocean Univ Chin 9(1):94–98

    Article  CAS  Google Scholar 

  43. Khiar ASA, Puteh R, Arof AK (2006) Physica B373:23–30

    Google Scholar 

  44. Fuentes S, Retuert PJ, Gonzalez G (2007) Electrochim Acta 53:1517–1422

    Article  Google Scholar 

  45. Raphael E, Cesar O, Avellaneda MB, Pawlicka A (2010) Electrochim Acta 55:1455–1459

    Article  CAS  Google Scholar 

  46. A JR, Raphael E, Pawlicka A (2009) Electrochim Acta 54:6479–6483

    Article  Google Scholar 

  47. Vieira DF, Avellaneda CO, Pawlicka A (2007) Electrochim Acta 53:1404–1408

    Article  CAS  Google Scholar 

  48. Reddy M, Sreekanth T, Rao Subba UV (1999) Solid State Ionics 126:55–62

    Article  CAS  Google Scholar 

  49. Osman Z, Ibrahim ZA, Arof AK (2001) Carbohyd Polym 44:167–175

    Article  CAS  Google Scholar 

  50. Machado GO, Ferreira H, Pawlicka A (2005) Electrochim Acta 50:3827–3833

    Article  CAS  Google Scholar 

  51. Mattos RI, Tambelli C, Donoso JP, Pawlicka A (2007) Electrochim Acta 53:1461–1468

    Article  CAS  Google Scholar 

  52. Pawlicka A, Danczuk M, Wieczorek W, Zygadlo-Monikowska E (2008) J Phy Chem A112:8888–8896

    Google Scholar 

  53. Shuhaimi NEA, Alias NA, Arof AK (2008) Funct Mater Lett 1:1–7

    Article  Google Scholar 

  54. Idris NH, Majid SR, Khiar ASA, Hassan MF, Arof AK (2005) Ionics 11:375–381

    Article  CAS  Google Scholar 

  55. Fuentes S, Retuert J, Gonzalez G (2003) Electrochim Acta 48:2015–2021

    Article  CAS  Google Scholar 

  56. Mormi NM, Arof AK (1999) J Power Sources 77:42–48

    Article  Google Scholar 

  57. Yahya MZA, Arof AK (2003) J Eur Polym 39:897–902

    Article  CAS  Google Scholar 

  58. Wan Y, Creber KMAM, Peppley B, Bui VT (2003) Macromol Chem Phys 204:850–857

    Article  CAS  Google Scholar 

  59. Lopez-Chavez, Martinez-Magadn, Oviedo-Roa, Guzman J, Ramirez-Salgado, Marin-Cruz (2005) Polymer 46:7519–7523

    Article  CAS  Google Scholar 

  60. Majid SR, Arof AK (2005) Physcia B 355:78–82

    Article  CAS  Google Scholar 

  61. Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF, Reis RL (2007) J R Soc Interface 4(17):999–1030

    Article  CAS  Google Scholar 

  62. Singh AV, Nath LK, Singh A (2010) Electron J Environ Agric Food Chem 9(7):1214–1221

    CAS  Google Scholar 

  63. Morris GA, Kök MS, Harding SE, Adams GG (2010) Biotechnol Genet Eng Rev 27:257–283

    CAS  Google Scholar 

  64. Manjanna KM, Shivakumar B, Pramodkumar TM (2010) Indian Drugs 47(9):7–22

    Google Scholar 

  65. Sousa AMM, Sereno AM, Hilliou L, Gonçalves MP (2010) Mater Sci Forum 636–637:739–744

    Article  Google Scholar 

  66. Kemsley JN (2010) Chem Eng News 88(49):38–40

    Article  Google Scholar 

  67. Weber P, Steinhart H, Paschke A (2010) Food Addit Contam A Chem Anal Control Expo Risk Assess 27(3):273–282

    CAS  Google Scholar 

  68. Lopes LVS, Dragunski DC, Pawlicka A, Donoso JP (2003) Electrochim Acta 48:2021–2027

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dean, Faculty of Engineering and Technology, Manav Rachna International University (formerly CITM Faridabad), Faridabad, for his kind support. The authors are grateful to All India Council of Technical Education (AICTE) for providing research grant under Research Promotion Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikha Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varshney, P.K., Gupta, S. Natural polymer-based electrolytes for electrochemical devices: a review. Ionics 17, 479–483 (2011). https://doi.org/10.1007/s11581-011-0563-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-011-0563-1

Keywords

Navigation