Skip to main content
Log in

Thermomechanical reliability of a Cu/Sn-3.5Ag solder joint with a Ni insertion layer in flip chip bonding for 3D interconnection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thermal compression bonding (TCB) has been widely used in flip chip bonding processes for three-dimensional integrated packaging. Therefore, studying the TCB process and solder joint structure is significant for improving reliability. In this study, a Ni layer was deposited between the Cu/Sn-3.5Ag solder bumps of upper and lower chips, and TCB process tests were carried out at different bonding temperatures, forces and times. The solder height at the top and bottom of the copper pillar were recorded. Through the establishment of a mathematical analysis model, the relationship between the solder joint height and maximum stress was analyzed theoretically, and the trend of the shear stress and solder joint height was obtained from die shear tests. Then, the solder joint morphology, strength and microstructure composition of the microbumps were observed after aging. Our results showed that the growth rate of intermetallic compounds (IMCs) for Cu/Sn-3.5Ag microbumps with a 25 μm diameter was 2.5 times those with a 100 μm diameter and that the Ni barrier layer prevented the diffusion of Cu in Sn-3.5Ag solder. In addition, the Ni layer improved the strength of the Cu/Sn-3.5Ag joints after aging. Finally, with extended aging time, the fracture site was found to move from the solder region to the Cu6Sn5 layer for the Cu/Sn-3.5Ag samples, while it remained at the Sn-3.5Ag/IMC interface for the Cu/Ni/Sn-3.5Ag samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H.-Y. You, Y. Hwang, J.-W. Pyun, Y.-G. Ryu, H.-S. Kim, IEEE, chip package interaction in micro bump and TSV structure, 2012.

  2. X. Zhang, J.K. Lin, S. Wickramanayaka, S. Zhang, R. Weerasekera, R. Dutta, K.F. Chang, K.-J. Chui, H.Y. Li, D.S.W. Ho, L. Ding, G. Katti, S. Bhattacharya, D.-L. Kwong, Heterogeneous 2.5D integration on through silicon interposer. Appl. Phys. Rev. 2(2), 021308 (2015)

    Article  Google Scholar 

  3. A. Sharma, D.-H. Jung, M.-H. Roh, J.P. Jung, Fabrication and shear strength analysis of Sn-3.5Ag/Cu-filled TSV for 3D microelectronic packaging. Electron. Mater. Lett. 12(6), 856–863 (2016)

    Article  CAS  Google Scholar 

  4. S. Jin, D. Lee, W.Y. Lee, S. Lee, M.H. Lee, Seed step-coverage enhancement process for a high-aspect-ratio through-silicon via using a pyrophosphate solution. Met. Mater. Int. 21(4), 775–779 (2015)

    Article  CAS  Google Scholar 

  5. J.-Y. Park, J.Y. Lee, H.-P. Park, S.-C. Kim, T.-Y. Lee, S. Yoo, Y.-H. Kim, Joint properties and reliability of Cu/Sn-Ag pillar bumps via low-temperature thermo-compression bonding. Microelectron. Eng. 216, 110973 (2019)

    Article  CAS  Google Scholar 

  6. B. Lee, J. Park, S.-J. Jeon, K.-W. Kwon, H.-J. Lee, A study on the bonding process of Cu bump/Sn/Cu bump bonding structure for 3D packaging applications. J. Electrochem. Soc. 157(4), H420–H424 (2010)

    Article  CAS  Google Scholar 

  7. M.-S. Kim, M.-S. Kang, J.-H. Bang, C.-W. Lee, M.-S. Kim, S. Yoo, Interfacial reactions of fine-pitch Cu/Sn-3.5Ag pillar joints on Cu/Zn and Cu/Ni under bump metallurgies. J. Alloy. Compd. 616, 394–400 (2014)

    Article  CAS  Google Scholar 

  8. M.-L. Wu, S.-Y. Chiou, Y.-M. Hwang, Empirical equations for optimization conditions in thermal compression bonding of copper pillar flip chip packages. IEEE Trans. Compon. Packag. Manuf. Technol. 8(6), 1116–1120 (2018)

    Article  CAS  Google Scholar 

  9. G.-T. Park, B.-R. Lee, K. Son, Y.-B. Park, Ni barrier symmetry effect on electromigration failure mechanism of Cu/Sn–Ag microbump. Electron. Mater. Lett. 15(2), 149–158 (2019)

    Article  CAS  Google Scholar 

  10. K. Zeng, K.N. Tu, Six cases of reliability study of Pb-free solder joints in electronic packaging technology. Mater. Sci. Eng. R-Rep. 38(2), 55–105 (2002)

    Article  Google Scholar 

  11. H.L.J. Pang, K.H. Tan, X.Q. Shi, Z.P. Wang, Microstructure and intermetallic growth effects on shear and fatigue strength of solder joints subjected to thermal cycling aging. Mater. Sci. Eng. A 307(1–2), 42–50 (2001)

    Article  Google Scholar 

  12. J.-Y. Chang, R.-S. Cheng, K.-S. Kao, T.-C. Chang, T.-H. Chuang, Reliable microjoints formed by solid-liquid interdiffusion (SLID) bonding within a chip-stacking architecture. IEEE Trans. Compon. Packag. Manuf. Technol. 2(6), 979–984 (2012)

    Article  CAS  Google Scholar 

  13. T.C. Chang, R.S. Cheng, K.S. Kao, W. Li, T.-H. Chen, in Reliable Microjoints for Chip Stacking Formed by Solid-Liquid Interdiffusion (SLID) Bonding, 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference, IMPACT 2011, (IEEE, Taipei, Taiwan, 2011)

  14. F. Guo, S. Choi, K.N. Subramanian, T.R. Bieler, J.P. Lucas, A. Achari, M. Paruchuri, Evaluation of creep behavior of near-eutectic Sn-Ag solders containing small amount of alloy additions. Mater. Sci. Eng. A 351(1–2), 190–199 (2003)

    Article  Google Scholar 

  15. S.H. Kim, J. Yu, Fe addition to Sn-3.5Ag solder for the suppression of Kirkendall void formation. Scripta Materialia 69(3), 254–257 (2013)

    Article  CAS  Google Scholar 

  16. H.T. Lee, M.H. Chen, H.M. Jao, C.J. Hsu, Effect of adding Sb on microstructure and adhesive strength of Sn-Ag solder joints. J. Electron. Mater. 33(9), 1048–1054 (2004)

    Article  CAS  Google Scholar 

  17. Y.-H. Lee, H.-T. Lee, Shear strength and interfacial microstructure of Sn–Ag-xNi/Cu single shear lap solder joints. Mater. Sci. Eng. A 444(1–2), 75–83 (2007)

    Article  Google Scholar 

  18. J.Y. Tsai, Y.C. Hu, C.M. Tsai, C.R. Kao, A study on the reaction between Cu and Sn3.5Ag solder doped with small amounts of Ni. J. Electron. Mater. 32(11), 1203–1208 (2003)

    Article  CAS  Google Scholar 

  19. J.W. Yoon, C.B. Lee, S.B. Jung, Growth of an intermetallic compound layer with Sn-3.5Ag-5Bi on Cu and Ni-P/Cu during aging treatment. J. Electron. Mater. 32(11), 1195–1202 (2003)

    Article  CAS  Google Scholar 

  20. M.O. Alam, Y.C. Chan, Solid-state growth kinetics of Ni(3)Sn(4) at the Sn-3.5Ag solder/Ni interface. J. Appl. Phys. 98(12), 123527 (2005)

    Article  Google Scholar 

  21. M.O. Alam, Y.C. Chan, K.N. Tu, Effect of 0.5 wt% Cu addition in Sn-3.5%Ag solder on the dissolution rate of Cu metallization. J. Appl. Phys. 94(12), 7904–7909 (2003)

    Article  CAS  Google Scholar 

  22. M.O. Alam, Y.C. Chan, K.N. Tu, Elimination of Au-embrittlement in solder joints on Au/Ni metallization. J. Mater. Res. 19(5), 1303–1306 (2004)

    Article  CAS  Google Scholar 

  23. W. Zhu, L. Shi, L. Jiang, H. He, Effect of intermetallic compound thickness on mechanical fatigue properties of copper pillar micro-bumps. Microelectron. Reliab. 111, 113723 (2020)

    Article  CAS  Google Scholar 

  24. M.S. Park, S.L. Gibbons, R. Arroyave, Phase-field simulations of intermetallic compound growth in Cu/Sn/Cu sandwich structure under transient liquid phase bonding conditions. Acta Mater. 60(18), 6278–6287 (2012)

    Article  CAS  Google Scholar 

  25. C.K. Chung, J.-G. Duh, C.R. Kao, Direct evidence for a Cu-enriched region at the boundary between Cu6Sn5 and Cu3Sn during Cu/Sn reaction. Scripta Mater. 63(2), 258–260 (2010)

    Article  CAS  Google Scholar 

  26. K. Chu, Y. Sohn, C. Moon, A comparative study of Cn/Sn/Cu and Ni/Sn/Ni solder joints for low temperature stable transient liquid phase bonding. Scripta Mater. 109, 113–117 (2015)

    Article  CAS  Google Scholar 

  27. A. Kumar, M. He, Z. Chen, P.S. Teo, Effect of electromigration on interfacial reactions between electroless Ni-P and Sn-3.5% Ag solder. Thin Solid Films 462, 413–418 (2004)

    Article  Google Scholar 

  28. B.-S. Lee, S.-K. Hyun, J.-W. Yoon, Cu-Sn and Ni-Sn transient liquid phase bonding for die-attach technology applications in high-temperature power electronics packaging. J. Mater. Sci. 28(11), 7827–7833 (2017)

    CAS  Google Scholar 

  29. D.-G. Kim, J.-W. Kim, S.-S. Ha, B.-I. Noh, J.-M. Koo, D.-W. Park, M.-W. Ko, S.-B. Jung, Effect of reflow numbers on the interfacial reaction and shear strength of flip chip solder joints. J. Alloy. Compd. 458(1–2), 253–260 (2008)

    Article  CAS  Google Scholar 

  30. S. Ahat, M. Sheng, L. Luo, Microstructure and shear strength evolution of SnAg/Cu surface mount solder joint during aging. J. Electron. Mater. 30(10), 1317–1322 (2001)

    Article  CAS  Google Scholar 

  31. Y.C. Chan, A.C.K. So, J.K.L. Lai, Growth kinetic studies of Cu–Sn intermetallic compound and its effect on shear strength of LCCC SMT solder joints. Mater. Sci. Eng. B 55(1), 5–13 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CT: Data curation, writing—original draft. WZ: Conceptualization, methodology. ZC: Methodology, Writing—review and editing. LW: Conceptualization, methodology, writing—review and editing, supervision.

Corresponding authors

Correspondence to Wenhui Zhu or Liancheng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1401 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, C., Zhu, W., Chen, Z. et al. Thermomechanical reliability of a Cu/Sn-3.5Ag solder joint with a Ni insertion layer in flip chip bonding for 3D interconnection. J Mater Sci: Mater Electron 32, 11893–11909 (2021). https://doi.org/10.1007/s10854-021-05819-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05819-4

Navigation