Skip to main content
Log in

Fabrication and shear strength analysis of Sn-3.5Ag/Cu-filled TSV for 3D microelectronic packaging

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this study, lead free Sn-3.5Ag solder bumps have been deposited on Cu-filled through-silicon via (TSV) by electroplating method. The solder bumps are plated using an acidic solution composed of SnSO4, H2SO4, Ag2SO4, thiourea and an additive. The current density is varied from −30 to −60 mA/cm2 to obtain the eutectic Sn-3.5Ag solder. The copper is electroplated in TSV using an acidic solution of CuSO4·5H2O, H2SO4, HCl, and an inhibitor. The bottom-up Cu-filling in TSV is achieved by a 3-step pulse periodic reverse (PPR) electroplating. It has been observed that the eutectic Sn-3.5Ag solder is achieved at a current density of −55 mA/cm2. The solder bumps are further reflowed onto TSV at 260 °C for 20 seconds, and shear strength of the formed Sn-3.5Ag/Cu-filled TSV joint is investigated. The results indicate the formation of Cu6Sn5 and Ag3Sn intermetallic compounds (IMCs) at the joint interface. It is found that with an increase of shear speed from 0.5-10 mm/s, the shear stress initially increases to a maximum, and then decreases beyond shear speed of 10 mm/s through 500 mm/s. It is shown that the ductile fracture mode gradually decreases beyond shear speed of 10 mm/s and disappears completely at 500 mm/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Takahashi, M. Umemoto, N. Tanaka, K. Tanida, Y. Nemoto, Y. Tomita, M. Tage, and M. Bonkohara, Microelectron. Reliab. 43, 1267 (2003).

    Article  Google Scholar 

  2. T. C. Tsai, W. C. Tsao, W. Lin, C. L. Hsu, C. L. Lin, C. M. Hsu, J. F. Lin, C. C. Huang, and J. Y. Wu, Microelectron. Eng. 92, 29 (2012).

    Article  Google Scholar 

  3. J. V. Olmen, C. Huyghebaert, J. Coenen, J. V. Aelst, E. Sleeckx, A. V. Ammel, S. Armini, G. Katti, J. Vaes, W. Dehaene, E. Beyne, and Y. Travaly, Microelectron. Eng. 88, 745 (2011).

    Article  Google Scholar 

  4. M. H. Roh, S. Y. Park, W. J. Kim, and J. P. Jung, JWJ 29, 295 (2011).

    Google Scholar 

  5. R. Hon, S. W. R. Lee, S. Zhang, and C. K. Wong, Proc. IEEE 2005 Electronics Packaging Technology Conference, p. 384, IEEE, Singapore (2005).

    Book  Google Scholar 

  6. M.-H. Roh, H.-Y. Lee, W. J. Kim, and J. P. Jung, Korean J. Met. Mater. 49, 411 (2011).

    Article  Google Scholar 

  7. M. Tomisaka, M. Hoshino, H. Yonemura, and K. Takahashi, DENSO Technol. Rev. 6, 78 (2001).

    Google Scholar 

  8. T. H. Tsai and J. H. Huang, Microelectron. Eng. 88, 195 (2011).

    Article  Google Scholar 

  9. Z. Patterson, C. Weber, R. Balachandran, R. Gouk, S. Verhaverbeke, and M. Keswani, ECS Electrochem. Lett. 3, D41 (2014).

    Article  Google Scholar 

  10. S. C. Hong, W. G. Lee, J. K. Park, W. J. Kim, and J. P. Jung, JWJ 29, 9 (2011).

    Google Scholar 

  11. S. J. Hong, S. C. Hong, W. J. Kim, and J. P. Jung, J. Microelectron. Packag. Soc. 17, 79 (2010).

    Google Scholar 

  12. J. Y. Lin, C. C. Wan, Y. Y. Wang, and H. P. Feng, J. Electrochem. Soc. 154, D139 (2007).

    Article  Google Scholar 

  13. J. S. Bae, G. H. Chang, and J. H. Lee, J. Microelectron. Packag. Soc. 12, 129 (2005).

    Google Scholar 

  14. L. Hofmann, R. Ecke, S. E. Schulz, and T. Gessner, Microelectron. Eng. 88, 705 (2011).

    Article  Google Scholar 

  15. M. H. Roh, A. Sharma, J. H. Lee, and J. P. Jung, Metall. Mater. Trans. A 46A, 2051 (2015).

    Article  Google Scholar 

  16. S. C. Hong, S. Kumar, D. H. Jung, W. J. Kim, and J. P. Jung, Met. Mater. Int. 19, 123 (2013).

    Article  Google Scholar 

  17. L. P. Zhou, M. P. Wang, K. Peng, J. J. Zhu, Z. Fu, and Z. Li, T. Nonferr. Metal. Soc. 22, 2700 (2012).

    Article  Google Scholar 

  18. T. Wang, K. Jeppson, L. Ye, and J. Liu, Small 7, 2313 (2011).

    Article  Google Scholar 

  19. D. H. Jung, S. Kumar, and J. P. Jung, J. Microelectron. Packag. Soc. 22, 7 (2015).

    Article  Google Scholar 

  20. D. H. Jung, S. Agarwal, S. Kumar, and J. P. Jung, JMEP 12, 161 (2015).

    Google Scholar 

  21. L. M. Lee and A. A. Mohamad, Adv. Mater. Sci. Eng. 2013, 1 (2013).

    Google Scholar 

  22. A. D. E. Xu, J. Chow, M. Mayer, H.-R. Sohn, and J. P. Jung, Electron. Mater. Lett. 11, 1072 (2015).

    Article  Google Scholar 

  23. H. Y. Lee, A. Sharma, S.-H. Kee, Y. W. Lee, J. T. Moon, and J. P. Jung, Electron. Mater. Lett. 10, 997 (2014).

    Article  Google Scholar 

  24. I. U. Abhulimen, A. Kamto, Y. Liu, S. L. Burkett, and L. Schaper, J. Vac. Sci. Technol. B 26, 1834 (2008).

    Article  Google Scholar 

  25. K.-S. Kim, Y.-C. Lee, J.-H. Ahn, J. Y. Song, C. D. Yoo, and S.-B. Jung, Korean J. Met. Mater. 48, 1028 (2010).

    Article  Google Scholar 

  26. A. Sharma, S. Bhattacharya, S. Das, and K. Das, Metall. Mater. Trans. A, 44A, 5587 (2013).

    Article  Google Scholar 

  27. A. Sharma, S. Bhattacharya, S. Das, and K. Das, Metall. Mater. Trans. A, 45A, 4610 (2014).

    Article  Google Scholar 

  28. A. Sharma, Y. J. Jang, and J. P. Jung, Surf. Eng. 31, 458 (2015).

    Article  Google Scholar 

  29. A. Sharma, S. Bhattacharya, R. Sen, B. S. B. Reddy, H.-J. Fecht, K. Das, and S. Das, Mater. Charact. 68, 22 (2012).

    Article  Google Scholar 

  30. A. Sharma, S. Bhattacharya, S. Das, and K. Das, Appl. Surf. Sci. 290, 373 (2014).

    Article  Google Scholar 

  31. S. C. Hong, W. G. Lee, W. J. Kim, J. H. Kim, and J. P. Jung, Microelectron. Reliab. 51, 2228 (2011).

    Article  Google Scholar 

  32. C. Okoro, R. Labie, K. Vanstreels, A. Franquet, M. Gonzalez, B. Vandevelde, E. Beyne, D. Vandepitte, and B. Verlinden, J. Mater. Sci. 46, 3868 (2011).

    Article  Google Scholar 

  33. H.-Y. Chen, C. Chen, P.-W. Wu, J.-M. Shieh, S.-S. Cheng, and K. Hansen, J. Electron. Mater. 37, 224 (2008).

    Article  Google Scholar 

  34. C. R. Siviour, D. M. Williamson, S. J. P. Palmer, S. M. Walley, W. G. Proud, and J. E. Field, J. Phys. IV 110, 477 (2003).

    Google Scholar 

  35. S. Kumar, D. H. Jung, and J. P. Jung, IEEE Trans. Comp. Packag. Manuf. Tech. Part A 3, 441 (2013).

    Article  Google Scholar 

  36. A. Tong and Q. Fei, Microelectron. Reliab. 54, 932 (2014).

    Article  Google Scholar 

  37. D.-S. Liu, C.-Y. Kuo, C.-L. Hsu, G.-S. Shen, Y.-R. Chen, and K.-C. Lo, Mater. Sci. Eng. A 494, 196 (2008).

    Article  Google Scholar 

  38. S.-J. Jeon, S. Hyun, H.-J. Lee, J.-W. Kim, S.-S. Ha, J.-W. Yoon, S.-B. Jung, and H.-J. Lee, Microelectron. Eng. 85, 1967 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Pil Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Jung, DH., Roh, MH. et al. Fabrication and shear strength analysis of Sn-3.5Ag/Cu-filled TSV for 3D microelectronic packaging. Electron. Mater. Lett. 12, 856–863 (2016). https://doi.org/10.1007/s13391-016-6144-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-016-6144-8

Keywords

Navigation