Skip to main content
Log in

Dielectric and piezoelectric properties of 0.970(0.95(K0.485Na0.515)NbO3–0.05LiSbO3)–0.015CuO–0.015Al2O3/PVDF 0–3 composite reinforced with two kinds of ZnO powder

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

0.970(0.95(K0.485Na0.515)NbO3–0.05LiSbO3)–0.015CuO–0.015Al2O3 (KNNLS–CA) ceramic powder obtained through the conventional solid state reaction. The ZnO nanoparticles (denoted as ZnO1) and poly (vinylidene fluoride) (PVDF) were supplied from commercial companies. The self-synthesized ZnO powder (denoted as ZnO2) were prepared by hydrothermal method using Zn (CH3COO)2·2H2O and NaOH. Subsequently, the two kinds of composites were fabricated by hot-pressing process using KNNLS–CA ceramic powder, two kinds of ZnO powder and PVDF polymer. The effects of the ZnO on the crystalline structures, morphology, thermal stability, densities and electric properties of composites were studied systemically. The KNNLS–CA ceramic possesses a perovskite phase with orthorhombic symmetry and peaks from the second phase of K3Li2Nb5O15 (PDF#52-0157) are detected by X-ray diffraction. PVDF polymer mainly possesses α, β and γ phases. Two kinds of ZnO all possess hexagonal wurtzite structures without any impurity phase. It is worth noting that the ZnO particles have great impacts on lattice constants, strain and crystallinity. In addition, the ZnO particles can enhance the relative fraction of β phase in PVDF and improve the thermal stability of the composite. Interestingly, the dielectric and piezoelectric properties are also found to be improved with the increase of ZnO content. Especially, when 10 wt.% ZnO2 is doped, the dielectric permittivity reaches the value of 586.4 (100 Hz) at room temperature and the piezoelectric constant is 64 pC/N. After 30 days of aging test, it is obvious that all the composites present a good stability of piezoelectric property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdullah, I.Y., Yahaya, M., Jumali, M.H.H., Shanshool, H.M.: Enhancement piezoelectricity in poly(vinylidene fluoride) by filler piezoceramics lead-free potassium sodium niobate (KNN). Opt. Quant. Electron. 48(2), 149–156 (2016)

    Google Scholar 

  • Ashok, A., Somaiah, T., Ravinder, D., Venkateshwarlu, C., Reddy, C.S., Rao, K.N., Prasad, M.: Electrical properties of cadmium substitution in nickel ferrites. World J. Condens. Matter Phys. 2(4), 257–266 (2012)

    ADS  Google Scholar 

  • Atamanik, E., Thangadurai, V.: Dielectric properties of Ga-doped Na0.5K0.5NbO3. J. Phys. Chem. C 113(11), 4648–4653 (2009)

    Google Scholar 

  • Batool, A., Kanwal, F., Imran, M., Jamil, T., Siddiqi, S.A.: Synthesis of polypyrrole/zinc oxide composites and study of their structural, thermal and electrical properties. Synth. Met. 161(23), 2753–2758 (2012)

    Google Scholar 

  • Bhat, S., Shrisha, B.V., Naik, K.G.: Hydrothermal growth and characterization of ZnO nanomaterials. Environ. Sci. Eng. 48(2), 607–610 (2014)

    Google Scholar 

  • Bhatt, A.S., Bhat, D.K., Santosh, M.S.: Crystallinity, conductivity, and magnetic properties of PVDF-Fe3O4 composite films. J. Appl. Polym. Sci. 119(2), 968–972 (2011)

    Google Scholar 

  • Cao, M.S., Song, W.L., Hou, Z.L., Wen, B., Yuan, J.: The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3), 788–796 (2010)

    Google Scholar 

  • Cao, M.S., Wang, X.X., Cao, W.Q., Fang, X.Y., Wen, B., Yuan, J.: Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14(29), 1800987 (2018)

    Google Scholar 

  • Chen, C., Huang, Y., Tan, Y., Sheng, Y.: Structure and electric properties of Li-modified (K0.48Na0.52)NbO3-0.015CuO lead-free piezoceramics. J. Alloy Compd. 663, 46–51 (2016)

    Google Scholar 

  • Chen, Y., Xie, S.X., Wang, H.M., Chen, Q., Wang, Q.Y., Zhu, J.G., Guan, Z.W.: Dielectric abnormality and ferroelectric asymmetry in W/Cr co-doped Bi4Ti3O12 ceramics based on the effect of defect dipoles. J. Alloy Compd. 696, 746–753 (2017)

    Google Scholar 

  • Cheong, O.J., Lee, J.S., Kim, J.H., Jang, J.: High performance flexible actuator of urchin-like ZnO nanostructure/polyvinylenefluoride hybrid thin film with graphene electrodes for acoustic generator and analyzer. Small 12(19), 2567–2574 (2016)

    Google Scholar 

  • Chi, Q.G., Gao, L., Wang, X., Chen, Y., Dong, J.F., Cui, Y., Lei, Q.Q.: Effects of magnetic field treatment on dielectric properties of CCTO@Ni/PVDF composite with low concentration of ceramic fillers. AIP Adv. 5(11), 117103 (2015)

    ADS  Google Scholar 

  • Choi, J.H., Seo, J.S., Cha, S.N., Kim, H.J., Kim, S.M., Park, Y.J., Kim, S.W., Yoo, J.B., Kim, J.M.: Effects of flow transport of the Ar carrier on the synthesis of ZnO nanowires by chemical vapor deposition. Jpn. J. Appl. Phys. 50(1), 015001 (2011)

    ADS  Google Scholar 

  • Dang, Z.-M., Zhou, T., Yao, S.-H., Yuan, J.-K., Zha, J.-W., Song, H.-T., Li, J.-Y., Chen, Q., Yang, W.-T., Bai, J.: Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv. Mater. 21(20), 2077–2082 (2009)

    Google Scholar 

  • Dias, C.J., DasGupta, D.K.: Inorganic ceramic/polymer ferroelectric composite electrets. IEEE Trans. Dielectr. Electr. Insul. 3(5), 706–734 (1996)

    Google Scholar 

  • Du, F.F., Tong, G.X., Tong, C.L., Liu, Y., Tao, J.Q.: Selective synthesis and shape-dependent microwave electromagnetic properties of polymorphous ZnO complex architectures. J. Mater. Res. 29(5), 649–656 (2014)

    ADS  Google Scholar 

  • Fang, H.J., Li, Q., Yang, Z.L., Luo, N.N., Geng, C., Zhang, Y.L., Chu, X.C., Yan, Q.F.: Effects of pre-polarization on the dielectric and piezoelectric properties of 0–3 type PIN-PMN-PT/PVDF composites. J. Mater. Sci.-Mater. Electron. 26(9), 6427–6433 (2015a)

    Google Scholar 

  • Fang, L.J., Wu, W., Huang, X.Y., He, J.L., Jiang, P.K.: Hydrangea-like zinc oxide superstructures for ferroelectric polymer composites with high thermal conductivity and high dielectric constant. Compos. Sci. Technol. 107, 67–74 (2015b)

    Google Scholar 

  • Gao, W., Zhou, B., Liu, Y.H., Ma, X.Y., Liu, Y., Wang, Z.C., Zhu, Y.C.: The influence of surface modification on the structure and properties of a zinc oxide-filled poly(ethylene terephthalate). Polym. Int. 62(3), 432–438 (2013)

    Google Scholar 

  • Ghosh, S.K., Alam, M.M., Mandal, D.: The in situ formation of platinum nanoparticles and their catalytic role in electroactive phase formation in poly(vinylidene fluoride): a simple preparation of multifunctional poly(vinylidene fluoride) films doped with platinum nanoparticles. RSC Adv. 4(87), 41886–41894 (2014)

    Google Scholar 

  • Greeshma, T., Balaji, R., Jayakumar, S.: PVDF phase formation and its influence on electrical and structural properties of PZT-PVDF composites. Ferroelectr. Lett. 40(1), 41–55 (2013)

    Google Scholar 

  • Gregorio, R., Nociti, N.C.P.D.: Effect of PMMA addition on the solution crystallization of the alpha-phase and beta-phase of poly(vinylidene fluoride) (PVDF). J. Phys. D Appl. Phys. 28(2), 432–436 (1995)

    ADS  Google Scholar 

  • Guo, Y., Kakimoto, K., Ohsato, H.: Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85(18), 4121–4123 (2004)

    ADS  Google Scholar 

  • He, Y., Hong, J.M.: Effect of nano-sized ZnO particle addition on PVDF ultrafiltration membrane performance. Adv. Mater. Process. 1(311), 1818–1821 (2011)

    Google Scholar 

  • Huang, Y.X., Cao, Q.X., Li, Z.M., Jiang, H.Q., Wang, Y.P., Li, G.F.: Effect of synthesis atmosphere on the microwave dielectric properties of ZnO powders. J. Am. Ceram. Soc. 92(9), 2129–2131 (2009)

    Google Scholar 

  • Huang, Y.Q., Du, H.W., Feng, W., Qin, H.N., Hu, Q.B.: Influence of SrZrO3 addition on structural and electrical properties of (K0.45Na0.51Li0.04)(Nb0.90Ta0.04Sb0.06)O-3 lead-free piezoelectric ceramics. J. Alloy Compd. 590, 435–439 (2014)

    Google Scholar 

  • Indolia, A.P., Gaur, M.S.: Investigation of structural and thermal characteristics of PVDF/ZnO nanocomposites. J. Therm. Anal. Calorim. 113(2), 821–830 (2013)

    Google Scholar 

  • Khokhar, A., Goyal, P.K., Thakur, O.P., Sreenivas, K.: Effect of excess of bismuth doping on dielectric and ferroelectric properties of BaBi4Ti4O15 ceramics. Ceram. Int. 41(3), 4189–4198 (2015)

    Google Scholar 

  • Kumari, K., Prasad, A., Prasad, K.: Structural and dielectric properties of ZnO added (Na1/2Bi1/2)TiO3 Ceramics. J. Mater. Sci. Technol. 27(3), 213–217 (2011)

    Google Scholar 

  • Lee, Y.C., Lee, T.K., Jan, J.H.: Piezoelectric properties and microstructures of ZnO-doped Bi0.5Na0.5TiO3 ceramics. J. Eur. Ceram. Soc. 31(16), 3145–3152 (2011)

    Google Scholar 

  • Li, Y., Fang, X.Y., Cao, M.S.: Thermal frequency shift and tunable microwave absorption in BiFeO3 family. Sci. Rep. 6, 24837 (2016)

    ADS  Google Scholar 

  • Li, Y.J., Li, S.L., Gong, P., Li, Y.L., Fang, X.Y., Jia, Y.H., Cao, M.S.: Effect of surface dangling bonds on transport properties of phosphorous doped SiC nanowires. Phys. E 104, 247–253 (2018)

    Google Scholar 

  • Lonjon, A., Demont, P., Dantras, E., Lacabanne, C.: Mechanical improvement of P(VDF–TrFE)/nickel nanowires conductive nanocomposites: influence of particles aspect ratio. J. Non-Cryst. Solids 358(2), 236–240 (2012)

    ADS  Google Scholar 

  • Lopes, A.C., Carabineiro, S.A., Pereira, M.F., Botelho, G., Lanceros-Mendez, S.: Nanoparticle size and concentration dependence of the electroactive phase content and electrical and optical properties of Ag/poly(vinylidene fluoride) composites. ChemPhysChem 14(9), 1926–1933 (2013)

    Google Scholar 

  • Luo, B.C., Wang, X.H., Wang, Y.P., Li, L.T.: Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss. J. Mater. Chem. A 2(2), 510–519 (2014)

    Google Scholar 

  • Maity, N., Mandal, A., Nandi, A.K.: Hierarchical nanostructured polyaniline functionalized graphene/poly(vinylidene fluoride) composites for improved dielectric performances. Polymer 103, 83–97 (2016)

    Google Scholar 

  • Martins, P., Caparros, C., Goncalves, R., Martins, P.M., Benelmekki, M., Botelho, G., Lanceros-Mendez, S.: Role of nanoparticle surface charge on the nucleation of the electroactive beta-poly(vinylidene fluoride) nanocomposites for sensor and actuator applications. J. Phys. Chem. C 116(29), 15790–15794 (2012)

    Google Scholar 

  • Paria, S., Karan, S.K., Bera, R., Das, A.K., Maitra, A., Khatua, B.B.: A facile approach to develop a highly stretchable PVC/ZnSnO3 piezoelectric nanogenerator with high output power generation for powering portable electronic devices. Ind. Eng. Chem. Res. 55(40), 10671–10680 (2016)

    Google Scholar 

  • Pilgrim, S.M., Newnham, R.E.: 3-0—a new composite connectivity. Mater. Res. Bull. 21(12), 1447–1454 (1986)

    Google Scholar 

  • Ponraj, B., Bhimireddi, R., Varma, K.B.R.: Effect of nano- and micron-sized K0.5Na0.5NbO3 fillers on the dielectric and piezoelectric properties of PVDF composites. J. Adv. Ceram. 5(4), 308–320 (2016)

    Google Scholar 

  • Puertolas, J.A., Garcia-Garcia, J.F., Pascual, F.J., Gonzalez-Dominguez, J.M., Martinez, M.T., Anson-Casaos, A.: Dielectric behavior and electrical conductivity of PVDF filled with functionalized single-walled carbon nanotubes. Compos. Sci. Technol. 152, 263–274 (2017)

    Google Scholar 

  • Singh, H.H., Singh, S., Khare, N.: Enhanced -phase in PVDF polymer nanocomposite and its application for nanogenerator. Polym. Adv. Technol. 29(1), 143–150 (2018)

    Google Scholar 

  • Song, W.L., Cao, M.S., Hou, Z.L., Fang, X.Y., Shi, X.L., Yuan, J.: High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl. Phys. Lett. 94(23), 233110 (2009)

    ADS  Google Scholar 

  • Song, S.X., Zheng, Z.H., Bi, Y.J., Lv, X., Sun, S.L.: Improving the electroactive phase, thermal and dielectric properties of PVDF/graphene oxide composites by using methyl methacrylate-co-glycidyl methacrylate copolymers as compatibilizer. J. Mater. Sci. 54(5), 3832–3846 (2019)

    ADS  Google Scholar 

  • Thakur, P., Kool, A., Hoque, N.A., Bagchi, B., Khatun, F., Biswas, P., Brahma, D., Roy, S., Banerjee, S., Das, S.: Superior performances of in situ synthesized ZnO/PVDF thin film based self-poled piezoelectric nanogenerator and self-charged photo-power bank with high durability. Nano Energy 44, 456–467 (2018)

    Google Scholar 

  • Thomas, P., Satapathy, S., Dwarakanath, K., Varma, K.B.R.: Dielectric properties of poly(vinylidene fluoride)/CaCu3Ti4O12 nanocrystal composite thick films. Express Polym. Lett. 4(10), 632–643 (2010)

    Google Scholar 

  • Tong, G.X., Ma, J., Wu, W.H., Hua, Q., Qiao, R., Qian, H.S.: Grinding speed dependence of microstructure, conductivity, and microwave electromagnetic and absorbing characteristics of the flaked Fe particles. J. Mater. Res. 26(5), 682–688 (2011)

    ADS  Google Scholar 

  • Vijayaprasath, G., Murugan, R., Asaithambi, S., Babu, G.A., Sakthivel, P., Mahalingam, T., Hayakawa, Y., Ravi, G.: Structural characterization and magnetic properties of Co co-doped Ni/ZnO nanoparticles. Appl. Phys. A-Mater. 122(2), 122 (2016)

    ADS  Google Scholar 

  • Wang, Z., Wang, T., Wang, C., Xiao, Y.J., Jing, P.P., Cui, Y.F., Pu, Y.P.: Poly(vinylidene fluoride) flexible nanocomposite films with dopamine-coated giant dielectric ceramic nanopowders, Ba(Fe0.5Ta0.5)O-3, for high energy-storage density at low electric field. ACS Appl. Mater. Int. 9(34), 29130–29139 (2017)

    Google Scholar 

  • Wang, S.T., Sun, J., Tong, L., Guo, Y.M., Wang, H., Wang, C.C.: Superior dielectric properties in Na0.35%Ba99.65%Ti99.65%Nb0.35%O3/PVDF composites. Mater. Lett. 211, 114–117 (2018)

    Google Scholar 

  • Wen, B., Cao, M.S., Lu, M.M., Cao, W.Q., Shi, H.L., Liu, J., Wang, X.X., Jin, H.B., Fang, X.Y., Wang, W.Z., Yuan, J.: Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014)

    ADS  Google Scholar 

  • Xing, C.Y., Zhao, L.P., You, J.C., Dong, W.Y., Cao, X.J., Li, Y.J.: Impact of ionic liquid-modified multiwalled carbon nanotubes on the crystallization behavior of poly(vinylidene fluoride). J. Phys. Chem. B 116(28), 8312–8320 (2012)

    Google Scholar 

  • Yang, L.Y., Li, X.Y., Allahyarov, E., Taylor, P.L., Zhang, Q.M., Zhu, L.: Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect. Polymer 54(7), 1709–1728 (2013)

    Google Scholar 

  • Yu, L., Cebe, P.: Crystal polymorphism in electrospun composite nanofibers of poly(vinylidene fluoride) with nanoclay. Abstr. Pap. Am. Chem. S 238, 2133–2141 (2009)

    Google Scholar 

  • Yu, K., Hu, S., Yu, W.D., Tan, J.Q.: Piezoelectric and dielectric properties of (0.970(0.95(K0.485Na0.515)NbO3–0.05LiSbO3)–0.015CuO–0.015Al2O3)/PVDF composites at different immersing conditions. J. Electron. Mater. 48(9), 5919–5932 (2019)

    ADS  Google Scholar 

  • Zak, A.K., Gan, W.C., Abd Majid, W.H., Darroudi, M., Velayutham, T.S.: Experimental and theoretical dielectric studies of PVDF/PZT nanocomposite thin films. Ceram. Int. 37(5), 1653–1660 (2011)

    Google Scholar 

  • Zhang, Q.Q., Gao, F., Hu, G.X., Zhang, C.C., Wang, M., Qin, M.J., Wang, L.: Characterization and dielectric properties of modified Ba0.6Sr0.4TiO3/poly(vinylidene fluoride) composites with high dielectric tunability. Compos. Sci. Technol. 118, 94–100 (2015)

    Google Scholar 

  • Zhang, Y., Liu, C.H., Liu, J.B., Xiong, J., Liu, J.Y., Zhang, K., Liu, Y.D., Peng, M.Z., Yu, A.F., Zhang, A.H., Zhang, Y., Wang, Z.W., Zhai, J.Y., Wang, Z.L.: Lattice strain induced remarkable enhancement in piezoelectric performance of ZnO-based flexible nanogenerators. ACS Appl. Mater. Int. 8(2), 1381–1387 (2016)

    Google Scholar 

  • Zhou, Y., Zhang, J.C., Li, L., Su, Y.L., Cheng, J.R., Cao, S.X.: Multiferroic composites in nano-microscale with non-solid solution by Co-ferrite and (K0.5Na0.5)NbO3-based ferroelectric matrix. J. Alloy Compd. 484(1), 535–539 (2009)

    Google Scholar 

  • Zhou, W.Y., Wang, Z.J., Dong, L.N., Sui, X.Z., Chen, Q.G.: Dielectric properties and thermal conductivity of PVDF reinforced with three types of Zn particles. Compos. Part A-Appl. S 79, 183–191 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Technology development Fund of China University of Geosciences (Grant No. 110-KH14J130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Hu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 12566 kb)

Supplementary material 2 (PDF 2183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, K., Hu, S., Yu, W. et al. Dielectric and piezoelectric properties of 0.970(0.95(K0.485Na0.515)NbO3–0.05LiSbO3)–0.015CuO–0.015Al2O3/PVDF 0–3 composite reinforced with two kinds of ZnO powder. Opt Quant Electron 51, 336 (2019). https://doi.org/10.1007/s11082-019-2051-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2051-1

Keywords

Navigation