Skip to main content
Log in

Investigation of structural and thermal characteristics of PVDF/ZnO nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The structural and thermal behavior of PVDF/ZnO nanocomposites have been investigated by employing scanning electron microscopy (SEM),TEM, DSC, powder X-ray diffraction (XRD), thermally stimulated discharge current (TSDC), and transient current techniques. SEM/TEM observation indicated the homogeneous dispersion of functionalized ZnO nanoparticles throughout PVDF matrix. DSC shows that the crystallinity is influenced by the presence of ZnO nanoparticles in the PVDF matrix because the filler acts as efficient nucleating agent to facilitate PVDF crystallization. DSC results indicated the enhancement of the glass transition temperature (T g), melting temperature (T m) and crystallization temperature (T c) of nanocomposites compared to pristine PVDF. XRD shows that the full-width at half maximum decreases with increasing ZnO content, which is attributed to the improvement in crystallinity. The incorporation of ZnO nanoparticles influences the modification of polarization process in PVDF as observed by means of TSDC and transient current study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shah D, Maiti P, Gunn E, Schmidt DF, Jiang DD, Batt CA, Giannelis EP. Dramatic enhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology. Adv Mater. 2004;16:1173–7.

    Article  CAS  Google Scholar 

  2. Saujanya C, Radhakrishnan S. Structure development and crystallization behavior of PP/nanoparticulate composite. Polymer. 2001;42:6723–31.

    Article  CAS  Google Scholar 

  3. Nelson JK, Fothergill JC. Internal charge behaviour of nanocomposites. Nanotechnology. 2004;15:586–95.

    Article  CAS  Google Scholar 

  4. Zhu J, Wilkie CA. Thermal and fire studies on olystyrene-clay nanocomposites. Polym Int. 2000;49:1158–63.

    Article  CAS  Google Scholar 

  5. Meneghetti P, Qutubuddin S. Synthesis, thermal properties and applications of polymer-clay nanocomposites. Thermochim Acta. 2006;442:74–7.

    Article  CAS  Google Scholar 

  6. Seiler DA. PVDF in the chemical process industry. In: Scheirs J, editor. Modern fluoropolymers. Chichester: Wiley; 1997. p. 487–505.

    Google Scholar 

  7. Taylor GW, Gagnepain JJ, Meeker TR, Nakamura T, Shuvalov LA. Piezoelectricity. New York: Gordon and Breach Science Publishers; 1985.

    Google Scholar 

  8. Vo LT, Giannelis EP. Compatibilizing poly (vinylidene fluoride)/nylon-6 blends with nanoclay. Macromolecules. 2007;40:8271–6.

    Article  CAS  Google Scholar 

  9. Miranda D, Sencadas V, Sánchez-Iglesias A, Pastoriza-Santos I, Liz-Marzán LM, Gomez Ribelles JL, Lanceros-Mendez S. Influence of silver nanoparticles concentration on the alpha- to beta-phase transformation and the physical properties of silver nanoparticles doped poly (vinylidene fluoride) nanocomposites. J Nanosci Nanotechnol. 2009;9:2910–6.

    Article  CAS  Google Scholar 

  10. Buckley J, Cebe P, Cherdack D, Crawford J, Seyhan Ince B, Jenkins M, Pan J, Reveley M, Washington N, Wolchover N. Nanocomposites of poly (vinylidene fluoride) with organically modified silicate. Polymer. 2006;47:2411–22.

    Article  CAS  Google Scholar 

  11. Jian L, Chilan C. The preparation and tribological properties of PVDF/TiO2 nanocomposites. Polymer-Plastics Tech Eng. 2010;49:643–7.

    Article  CAS  Google Scholar 

  12. Dillon DR, Tenneti KK, Li CY, Ko FK, Sics I, Hsiao BS. On the structure and morphology of polyvinylidene fluoride–nanoclay nanocomposites. Polymer. 2006;47:1678–88.

    Article  CAS  Google Scholar 

  13. Özgür Ü, Alivov YI, Lin C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc HA. Comprehensive review of ZnO materials and devices. J Appl. Phys. 2005;98:1–103.

    Article  Google Scholar 

  14. Nickel NH, Terukov E, editors. Zinc oxide-a material for micro and optoelectronic applications. Netherlands: Springer; 2005.

    Google Scholar 

  15. Gaur MS, Indolia AP. Thermally stimulated dielectric properties of polyvinylidenefluoride–zinc oxide nanocomposites. J Therm Anal Calorim. 2011;103:977–85.

    Article  CAS  Google Scholar 

  16. lal R, Shukla P, Saxena P, Gaur MS, Tiwari RK. Thermally stimulated discharge current and fractional polarization studies in polyimide (Kapton-H) samples. Indian J Pure Appl Phys. 2008;46:118–22.

    Google Scholar 

  17. lal R, Gaur MS, Tiwari RK. Time-dependent charging current study in polyimide film. J Plastic Film Sheeting. 2009;25:271–83.

    Article  Google Scholar 

  18. Ma W, Zhang J, Chen S, Wang X. b-phase of poly (vinylidene fluoride) formation in poly (vinylidene fluoride)/poly (methyl methacrylate) blend from solutions. Appl Surf Sci. 2008;254:5635–42.

    Article  CAS  Google Scholar 

  19. He J, Shao W, Zhang L, Deng C, Li C. Crystallization behavior and UV-protection property of PET-ZnO nanocomposites prepared by in situ polymerization. J Appl Polym Sci. 2009;114:1303–11.

    Article  CAS  Google Scholar 

  20. Li L, Li CY, Ni C, Rong L, Hsiao B. Structure and crystallization behavior of Nylon 66/multi-walled carbon nanotube nanocomposites at low carbon nanotube contents. Polymer. 2007;48:3452–60.

    Article  CAS  Google Scholar 

  21. Viratyaporn W, Lehman RL. Effect of nanoparticles on the thermal stability of PMMA nanocomposites prepared by in situ bulk polymerization. J Therm Anal Calorim. 2011;103:267–73.

    Article  CAS  Google Scholar 

  22. Cullity BD, Stock SR. Elements of X-ray diffraction. 3rd ed. New York: Prentice Hall; 2001.

    Google Scholar 

  23. Agarwal DC, Chauhan RS, Kumar A, Kabiraj D, Singh F, Khan SA, Avasthi DK, Pivin JC, Kumar M, Ghatak J, Satyam PV. Synthesis and characterization of ZnO thin film grown by electron beam evaporation. J Appl Phys. 2006;99:123105–10.

    Article  Google Scholar 

  24. Elashmawi IS. Effect of LiCl filler on the structure and morphology of PVDF films. Mater Chem Phys. 2008;107:96–100.

    Article  CAS  Google Scholar 

  25. Hakeem NA, Abdelkader HI, El-Sheshtawi NA, Elashmawi IS. Spectroscopic, thermal, and electrical investigations of PVDF films filled with BiCl3. J Appl Polym Sci. 2006;102:2125–31.

    Article  CAS  Google Scholar 

  26. Hussain AMP, Kumar A, Singh F, Awasthi DK. Effects of 160 MeV Ni 12 + ion irradiation on HCl doped polyaniline electrode. J Phys D Appl Phys. 2006;39:750–5.

    Article  CAS  Google Scholar 

  27. Alexander LE. X-ray diffraction methods in polymer science. New York: John Wiley; 1969. p. 379–81.

    Google Scholar 

  28. Zheng Y, Zheng L, Zhan Y, Lin X, Zheng Q, Wei K. Ag/ZnO heterostructure nanocrystals: synthesis, characterization and photo catalysis. Inorg Chem. 2007;46:6680–6.

    Google Scholar 

  29. Schonhals A. Molecular dynamics in polymer Model Systems in Broadband Dielectric spectroscopy. In: Friedrich Kremer, Andreas Schonhals, editors. Springer–Verlag. Berlin: Germany; 2003.

    Google Scholar 

  30. Garg M, Quamara JK. Multiple relaxation processes in high-energy ion irradiated kapton-H polyimide: thermally stimulated depolarization current study. Nucl Instrum Methods B. 2006;246:355–63.

    Article  CAS  Google Scholar 

  31. Quamara JK, Singh N, Singh A. Study of dielectric relaxation processes in poly (p-phenylene sulfide) using a thermally stimulated discharge current technique. Macromol Chem Phys. 2001;202:1955–60.

    Article  CAS  Google Scholar 

  32. Bhardwaj RP, Quamara JK, Nagpaul KK, Sharma BL. Non-isothermal depolarization current studies in Kapton-H thermoelectrets. Phys status solidi Appl Res. 1983;77:347–54.

    Article  CAS  Google Scholar 

  33. Van Turnhout J, Sessler GM. Electrets, topics in applied physics. Berlin: Springer; 1980.

    Google Scholar 

  34. Pillai PKC, Narula GK, Tripathi AK, Mendiratta RG. Polarization and depolarization studies on polypropylene: polycarbonate blends. Phys Rev B. 1982;27:2508–14.

    Article  Google Scholar 

  35. Mahendru PC, Jain K, Mahendru P. Effect of electrode metals on the depolarization current characteristics of PVAc thin films. J Phys D Appl Phys. 1978;11:1431–40.

    Article  Google Scholar 

  36. Or YT, Wong CK, Ploss B, Shin FG. Polarization behavior of ferroelectric multilayered composite structures. J Appl Phys. 2003;93:4112–9.

    Article  CAS  Google Scholar 

  37. Pillai PKC, Gupta BK, Goel M. Polarization studies by the TSC technique on a blend of cellulose-acetate and polyvinyl acetate. J Polym Sci Part B-Polym Phys. 1981;19:1461–70.

    Article  CAS  Google Scholar 

  38. Jonscher AK. Electronic properties of amorphous dielectric films. Thin Solid Films. 1967;1:213–34.

    Article  CAS  Google Scholar 

  39. Smaoui H, Mir LEL, Guermazi H, Agnel S, Toureille A. Study of dielectric relaxations in zinc oxide-epoxy resin nanocomposites. J Alloys Compounds. 2009;477:316–21.

    Article  CAS  Google Scholar 

  40. Fragiadakis D, Pissis P. Glass transition and segmental dynamics in poly(dimethylsiloxane)/silica nanocomposites studied by various techniques. J Non-Crystall Solids. 2007;353:4344–52.

    Article  CAS  Google Scholar 

  41. Kim HLi H. Thermal degradation and kinetic analysis of PVDF/modified MMT nanocomposite membranes. Desalination. 2008;234:9–15.

    Article  Google Scholar 

  42. Banhegyi G. Numerical analysis of complex dielectric mixture formulae. Colloid Polym Sci. 1986;266:11–28.

    Article  Google Scholar 

  43. Maxwell JC. A treatise on electricity and magnetism. Oxford: Clarendon Press; 1892.

    Google Scholar 

  44. Sessler GM. Electret. Berlin: Springer-Verlag; 1980. p. 165–70.

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the Defence Research & Development Organization (Vide letter no. ERIP/ER/0804419/M/01/1113), New Delhi (India). We are thankful to the Director, AIRF-JNU and CIPET, Lucknow (India), for providing XRD, SEM, and DSC characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Gaur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Indolia, A.P., Gaur, M.S. Investigation of structural and thermal characteristics of PVDF/ZnO nanocomposites. J Therm Anal Calorim 113, 821–830 (2013). https://doi.org/10.1007/s10973-012-2834-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2834-0

Keywords

Navigation