Skip to main content
Log in

Piezoelectric and Dielectric Properties of ((K0.475Na0.495Li0.03)NbO3-0.003ZrO2)/PVDF Composites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The (K0.475Na0.495Li0.03) NbO3-0.003ZrO2 (KNNL-Z) ceramic was synthesized by the conventional solid-state reaction and (KNNL-Z)/PVDF composites were fabricated by hot-pressing process using polyvinylidene fluoride (PVDF) and KNNL-Z ceramic. The effects of the ceramic content on the crystalline structures, morphology, densities, dielectric and piezoelectric properties of (KNNL-Z)/PVDF 0–3 composites were systemically studied. The KNNL-Z ceramic possesses a perovskite phase with orthorhombic symmetry and the PVDF polymer mainly possesses α, β and γ phases. Interestingly, the incorporation of the ceramic particles can decrease the crystallite size of the PVDF matrix. In addition, the β phase content increases and the a phase decreases when the ceramic particles are added. When the ceramic content increases from 40 wt.% to 80 wt.%, the relative fraction of β phase increases from 47.7% to 53.8%. Successful incorporation of ZrO2 into the KNN ceramic has been demonstrated by energy-dispersive x-ray spectroscopy and the most elements are homogeneously distributed in the composites. The dielectric and piezoelectric properties are found to be improved with the increase of KNNL-Z content. When 80 wt.% KNNL-Z is added, the dielectric permittivity reaches the value of 272 (100 Hz) at room temperature and the piezoelectric coefficient is 39 pC/N. After 30 days of aging, it is obvious that all the composites present a good stability of their piezoelectric property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Singh, V. Lingwal, S.C. Bhatt, N.S. Panwar, and B.S. Semwal, Mater. Res. Bull. 36, 2365 (2001).

    Article  Google Scholar 

  2. H.H. Su, C.S. Hong, C.C. Tsai, S.Y. Chu, and C.S. Lin, Ceram. Int. 42, 17558 (2016).

    Article  Google Scholar 

  3. J.G. Hao, Z.J. Xu, R.Q. Chu, W. Li, G.R. Li, and Q.R. Yin, J. Alloy. Compd. 484, 233 (2009).

    Article  Google Scholar 

  4. M. Arbatti, X.B. Shan, and Z.Y. Cheng, Adv. Mater. 19, 1369 (2007).

    Article  Google Scholar 

  5. L. Wu, J.L. Zhang, C.L. Wang, and J.C. Li, J. Appl. Phys. 103, 45 (2008).

    Google Scholar 

  6. Y. Huan, X.H. Wang, T. Wei, P.Y. Zhao, J. Xie, Z.F. Ye, and L.T. Li, J. Eur. Ceram. Soc. 37, 2057 (2017).

    Article  Google Scholar 

  7. G. Leveque, P. Marchet, F. Levassort, L.P. Tran-Huu-Hue, and J.R. Duclere, J. Eur. Ceram. Soc. 31, 577 (2011).

    Article  Google Scholar 

  8. X. Vendrell, J.E. Garcia, X. Bril, D.A. Ochoa, L. Mestres, and G. Dezanneau, J. Eur. Ceram. Soc. 35, 125 (2015).

    Article  Google Scholar 

  9. L.Q. Cheng, K. Wang, and J.F. Li, Mater. Lett. 138, 128 (2015).

    Article  Google Scholar 

  10. L. Ramajo, J. Taub, and M.S. Castro, J. Mater. Sci. Mater. Electron. 25, 168 (2014).

    Article  Google Scholar 

  11. A. Ameli, M. Nofar, C.B. Park, P. Potschke, and G. Rizvi, Carbon 71, 206 (2014).

    Article  Google Scholar 

  12. J.Q. Lin, G.R. Chen, W.L. Yang, H. Li, and Q.Q. Lei, J. Polym. Res. 23, 143 (2016).

    Article  Google Scholar 

  13. R. Senthilkumar, K. Sridevi, J. Venkatesan, V. Annamalai, and M.S. Vijaya, Ferroelectrics 325, 121 (2005).

    Article  Google Scholar 

  14. Z.L. Cui, N.T. Hassankiadeh, Y.B. Zhuang, E. Drioli, and Y.M. Lee, Prog. Polym. Sci. 51, 94 (2015).

    Article  Google Scholar 

  15. A. De Neef, C. Samuel, G. Stoclet, M. Rguiti, C. Courtois, P. Dubois, J. Soulestin, and J.M. Raquez, Soft Matter 14, 4591 (2018).

    Article  Google Scholar 

  16. N. Jahan, F. Mighri, D. Rodrigue, and A. Ajji, Appl. Clay Sci. 152, 93 (2018).

    Article  Google Scholar 

  17. S.K. Pradhan, A. Kumar, A.N. Sinha, P. Kour, R. Pandey, P. Kumar, and M. Kar, Ferroelectrics 516, 18 (2017).

    Article  Google Scholar 

  18. B. Ponraj, R. Bhimireddi, and K.B.R. Varma, J .Adv. Ceram. 5, 308 (2016).

    Article  Google Scholar 

  19. E. Venkatragavaraj, B. Satish, P.R. Vinod, and M.S. Vijaya, J. Phys. D Appl. Phys. 34, 487 (2001).

    Article  Google Scholar 

  20. D.Q. Zhang, D.W. Wang, J. Yuan, Q.L. Zhao, Z.Y. Wang, and M.S. Cao, Chin. Phys. Lett. 25, 4410 (2008).

    Article  Google Scholar 

  21. M. Kato and K.I. Kakimoto, Mater. Lett. 156, 183 (2015).

    Article  Google Scholar 

  22. K. Yu, H. Wang, Y.C. Zhou, Y.Y. Bai, and Y.J. Niu, J. Appl. Phys. 113, 321 (2013).

    Article  Google Scholar 

  23. A.K. Zak, W.C. Gan, W.H. Abd Majid, M. Darroudi, and T.S. Velayutham, Ceram. Int. 37, 1653 (2011).

    Article  Google Scholar 

  24. M. Feizpour, H.B. Bafrooei, R. Hayati, and T. Ebadzadeh, Ceram. Int. 40, 871 (2014).

    Article  Google Scholar 

  25. J. Pavlic, B. Malic, and T. Rojac, J. Eur. Ceram. Soc. 34, 285 (2014).

    Article  Google Scholar 

  26. T. Lusiola, A. Hussain, M.H. Kim, T. Graule, and F. Clemens, Actuators 45, 2344 (2015).

    Google Scholar 

  27. P. Kim, S.C. Jones, P.J. Hotchkiss, J.N. Haddock, B. Kippelen, S.R. Marder, and J.W. Perry, Adv. Mater. 19, 1001 (2007).

    Article  Google Scholar 

  28. S. Chen, K. Yao, F.E.H. Tay, and C.L. Liow, J. Appl. Phys. 102, 234 (2007).

    Google Scholar 

  29. L.Y. Xie, X.Y. Huang, Y.H. Huang, K. Yang, and P.K. Jiang, J. Phys. Chem. C 117, 22525 (2013).

    Article  Google Scholar 

  30. I.Y. Abdullah, M. Yahaya, M.H.H. Jumali, and H.M. Shanshool, Opt. Quantum Electron. 48, 424 (2016).

    Article  Google Scholar 

  31. C.J. Dias and D.K. DasGupta, IEEE Trans. Dielectr. Electr. Insul. 3, 706 (1996).

    Article  Google Scholar 

  32. T. Greeshma, R. Balaji, and S. Jayakumar, Ferroelectr. Lett. 40, 41 (2013).

    Article  Google Scholar 

  33. L. Yu and P. Cebe, Abstr. Pap. Am. Chem. Soc. 238, 34 (2009).

    Google Scholar 

  34. V. Tiwari and G. Srivastava, Ceram. Int. 41, 8008 (2015).

    Article  Google Scholar 

  35. S. Satapathy, S. Pawar, P.K. Gupta, and K.B.R. Varma, Bull. Mater. Sci. 34, 727 (2011).

    Article  Google Scholar 

  36. R. Gregorio and N.C.P.D. Nociti, J. Phys. D Appl. Phys. 28, 432 (1995).

    Article  Google Scholar 

  37. J.H. Seol, J.S. Lee, H.N. Ji, Y.P. Ok, G.P. Kong, K.S. Kim, C.Y. Kim, and W.P. Tai, Ceram. Int. 38, 263 (2012).

    Article  Google Scholar 

  38. S.T. Wang, J. Sun, L. Tong, Y.M. Guo, H. Wang, and C.C. Wang, Mater. Lett. 211, 114 (2018).

    Article  Google Scholar 

  39. T. Kar, J. Mal, and R.N.P. Choudhary, J. Mater. Sci. Lett. 16, 328 (1997).

    Article  Google Scholar 

  40. Z.M. He, J. Ma, R.F. Zhang, and T. Li, J. Eur. Ceram. Soc. 23, 1943 (2003).

    Article  Google Scholar 

  41. A. Ashok, T. Somaiah, D. Ravinder, C. Venkateshwarlu, C.S. Reddy, K.N. Rao, and M. Prasad, World J. Condens. Matter Phys. 2, 257 (2012).

    Article  Google Scholar 

  42. E. Atamanik and V. Thangadurai, J. Phys. Chem. C 113, 4648 (2009).

    Article  Google Scholar 

  43. Y. Chen, S.X. Xie, H.M. Wang, Q. Chen, Q.Y. Wang, J.G. Zhu, and Z.W. Guan, J. Alloy. Compd. 696, 746 (2017).

    Article  Google Scholar 

  44. N. Marimuthu, R. Parasuraman, M. Rathnakumari, P. Kumar, and R. Upadhyay, J. Mater. Sci. Mater. Electron. 29, 1280 (2018).

    Article  Google Scholar 

  45. Y. Zhou, J.C. Zhang, L. Li, Y.L. Su, J.R. Cheng, and S.X. Cao, J. Alloy. Compd. 484, 535 (2009).

    Article  Google Scholar 

  46. K.T. Selvi, K. Alamelumangai, M. Priya, M. Rathnakumari, P.S. Kumar, and S. Sagadevan, J. Mater. Sci. Mater. Electron. 27, 6457 (2016).

    Article  Google Scholar 

  47. I.S. Elashmawi, E.M. Abdelrazek, H.M. Ragab, and N.A. Hakeem, Phys. B 405, 94 (2010).

    Article  Google Scholar 

  48. A. Khokhar, P.K. Goyal, O.P. Thakur, and K. Sreenivas, Ceram. Int. 41, 4189 (2015).

    Article  Google Scholar 

  49. E. Roncari, C. Galassi, F. Craciun, C. Capiani, and A. Piancastelli, J. Eur. Ceram. Soc. 21, 409 (2001).

    Article  Google Scholar 

  50. Z.M. Dang, L. Wang, Y. Yin, Q. Zhang, and Q.Q. Lei, Adv. Mater. 19, 852 (2007).

    Article  Google Scholar 

  51. W.H. Yang, S.H. Yu, R. Sun, and R.X. Du, Acta Mater. 59, 5593 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Science and Technology development Fund of China University of Geosciences (Grant No. 110-KH14J130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Hu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, K., Hu, S., Yu, W. et al. Piezoelectric and Dielectric Properties of ((K0.475Na0.495Li0.03)NbO3-0.003ZrO2)/PVDF Composites. J. Electron. Mater. 48, 2329–2337 (2019). https://doi.org/10.1007/s11664-019-06978-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-06978-1

Keywords

Navigation