Skip to main content
Log in

Piezoelectric and Dielectric Properties of (0.970(0.95(K0.485Na0.515) NbO3-0.05LiSbO3)-0.015CuO-0.015Al2O3)/PVDF Composites at Different Immersing Conditions

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

(KNNLS-CA)/PVDF composites were fabricated by a hot-pressing process using 0.970(0.95(K0.485Na0.515) NbO3-0.05LiSbO3)-0.015CuO-0.015Al2O3 (KNNLS-CA) ceramic powder and polyvinylidene fluoride (PVDF). The crystalline structures, morphology, densities, conductivity, dielectric and piezoelectric properties of (KNNLS-CA)/PVDF 0–3 composites were investigated. It is found that the phase structure is perovskite with orthorhombic symmetry for KNNLS-CA ceramic. When the ceramic content is 60 wt.%, the lattice strain reaches the maximum value. In addition, the ceramic particles can increase the relative fraction of the β-phase and restrain α-phase in PVDF matrix. By immersing the samples under different conditions (de-ionized water and NaOH/KOH solutions), it is found that K+ ions are easier to form electrolytes and enhance the dielectric properties. Water solution can delay the neutralization between alkali metal ions especially Na+ ions and space charges, and improve the piezoelectric properties. In this study, a dielectric constant as ultrahigh as 185723 is obtained at 0.2 M KOH (aq) (100 Hz), which is about 928 times higher than that of the untreated composites. The dielectric properties are well explained in terms of an interfacial percolation model. The piezoelectric coefficient as high as 75 pC/N is obtained at 0.05 M NaOH (aq) and increases more than 97% of that of untreated samples. All samples have good piezoelectric stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Wu, J.L. Zhang, C.L. Wang, and J.C. Li, J. Appl. Phys. 103, 45 (2008).

    Google Scholar 

  2. Z. Tan, J. Xing, J. Wu, Q. Chen, W. Zhang, J. Zhu, and D. Xiao, J. Mater. Sci. Mater. Electron. 29, 5337 (2018).

    Article  Google Scholar 

  3. P. Li, X.Q. Chen, F.F. Wang, B. Shen, J.W. Zhai, S.J. Zhang, and Z.Y. Zhou, ACS Appl. Mater. Interfaces 10, 28772 (2018).

    Article  Google Scholar 

  4. J. Ma, B. Wu, W.J. Wu, and M. Chen, J. Mater. Sci. Mater. Electron. 29, 12323 (2018).

    Article  Google Scholar 

  5. J.Q. Lin, G.R. Chen, W.L. Yang, H. Li, and Q.Q. Lei, J. Polym. Res. 23, 143 (2016).

    Article  Google Scholar 

  6. M. Olszowy, E. Nogas-Cwikiel, and K. Cwikiel, J. Phys: Conf. Ser. 289, 12017 (2011).

    Google Scholar 

  7. S.K. Pradhan, A. Kumar, A.N. Sinha, P. Kour, R. Pandey, P. Kumar, and M. Kar, Ferroelectrics 516, 18 (2017).

    Article  Google Scholar 

  8. D.Q. Zhang, D.W. Wang, J. Yuan, Q.L. Zhao, Z.Y. Wang, and M.S. Cao, Chin. Phys. Lett. 25, 4410 (2008).

    Article  Google Scholar 

  9. M. Kato and K.I. Kakimoto, Mater. Lett. 156, 183 (2015).

    Article  Google Scholar 

  10. P.Y. Zhang, M.S. Wang, J.L. Zhu, and X.J. Zhu, J. Mater. Sci. Mater. Electron. 25, 4225 (2014).

    Article  Google Scholar 

  11. W.S. Rosa, M. Venet, J.C. M’Peko, H. Amorin, and M. Alguero, J. Alloys Compd. 744, 691 (2018).

    Article  Google Scholar 

  12. W.Y. Li, Z.Q. Song, J. Qian, H.Y. Chu, X.Y. Wu, Z.Y. Tan, and W. Nie, Ceram. Int. 44, 4835 (2018).

    Article  Google Scholar 

  13. L. Wang, F. Gao, J. Xu, K.N. Zhang, J. Kong, M. Reece, and H.X. Yan, Compos. Sci. Technol. 158, 112 (2018).

    Article  Google Scholar 

  14. J. Tolvanen, J. Hannu, M. Nelo, J. Juuti, and H. Jantunen, Smart Mater. Struct. 25, 9 (2016).

    Article  Google Scholar 

  15. R.K. Goyal and A.B. Kulkarni, J. Phys. D Appl. Phys. 45, 46 (2012).

    Article  Google Scholar 

  16. K. Yu, H. Wang, Y.C. Zhou, Y.Y. Bai, and Y.J. Niu, J. Appl. Phys. 113, 321 (2013).

    Article  Google Scholar 

  17. A.K. Zak, W.C. Gan, W.H. Abd Majid, M. Darroudi, and T.S. Velayutham, Ceram. Int. 37, 1653 (2011).

    Article  Google Scholar 

  18. B. Ponraj, R. Bhimireddi, and K.B.R. Varma, J. Adv. Ceram. 5, 308 (2016).

    Article  Google Scholar 

  19. T. Lusiola, A. Hussain, M.H. Kim, T. Graule, and F. Clemens, Actuators 45, 2344 (2015).

    Google Scholar 

  20. Y.Q. Huang, H.W. Du, W. Feng, H.N. Qin, and Q.B. Hu, J. Alloys Compd. 590, 435 (2014).

    Article  Google Scholar 

  21. C. Chen, Y. Huang, Y. Tan, and Y. Sheng, J. Alloys Compd. 663, 46 (2016).

    Article  Google Scholar 

  22. Y. Guo, K.-I. Kakimoto, and H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004).

    Article  Google Scholar 

  23. H. Abdoli, E. Salahi, H. Farnoush, and K. Pourazrang, J. Alloys Compd. 461, 166 (2008).

    Article  Google Scholar 

  24. S. Ayed, R. Ben Belgacem, J.O. Zayani, and A. Matoussi, Superlattices Microstruct. 91, 118 (2016).

    Article  Google Scholar 

  25. M. Razavi, M.R. Rahimipour, T. Ebadzadeh, S.S.R. Tousi, and B. Mater, Science 32, 155 (2009).

    Google Scholar 

  26. B. Nasiri-Tabrizi and A. Fahami, Ceram. Int. 39, 4329 (2013).

    Article  Google Scholar 

  27. S. Garehbaghi and A. Kianvash, Results Phys. 12, 1559 (2019).

    Article  Google Scholar 

  28. P. Kour and S.K. Sinha, Cerâmica 59, 34 (2013).

    Article  Google Scholar 

  29. G.K. Williamson and W.H. Hall, Acta Metall. Mater. 1, 23 (1953).

    Google Scholar 

  30. L. Yu and P. Cebe, Abstr. Pap. Am. Chem Soc. 238, 34 (2009).

    Google Scholar 

  31. V. Tiwari and G. Srivastava, Ceram. Int. 41, 8008 (2015).

    Article  Google Scholar 

  32. J.S. Andrew and D.R. Clarke, Langmuir 24, 670 (2008).

    Article  Google Scholar 

  33. M.P. Silva, C.M. Costa, V. Sencadas, A.J. Paleo, and S. Lanceros-Mendez, J. Polym. Res. 18, 1451 (2011).

    Article  Google Scholar 

  34. S.H. Cho and Y.J. Yoon, J. Korean Phys. Soc. 68, 340 (2016).

    Article  Google Scholar 

  35. S.T. Wang, J. Sun, L. Tong, Y.M. Guo, H. Wang, and C.C. Wang, Mater. Lett. 211, 114 (2018).

    Article  Google Scholar 

  36. J.H. Seol, J.S. Lee, H.N. Ji, Y.P. Ok, G.P. Kong, K.S. Kim, C.Y. Kim, and W.P. Tai, Ceram. Int. 38, 263 (2012).

    Article  Google Scholar 

  37. Z.M. He, J. Ma, R.F. Zhang, and T. Li, J. Eur. Ceram. Soc. 23, 1943 (2003).

    Article  Google Scholar 

  38. T. Kar, J. Mal, and R.N.P. Choudhary, J. Mater. Sci. Lett. 16, 328 (1997).

    Article  Google Scholar 

  39. Y. Chen, S.X. Xie, H.M. Wang, Q. Chen, Q.Y. Wang, J.G. Zhu, and Z.W. Guan, J. Alloys Compd. 696, 746 (2017).

    Article  Google Scholar 

  40. N. Marimuthu, R. Parasuraman, M. Rathnakumari, P. Kumar, and R. Upadhyay, J. Mater. Sci. Mater. Electron. 29, 1280 (2018).

    Article  Google Scholar 

  41. K.T. Selvi, K. Alamelumangai, M. Priya, M. Rathnakumari, P.S. Kumar, and S. Sagadevan, J. Mater. Sci. Mater. Electron. 27, 6457 (2016).

    Article  Google Scholar 

  42. E. Roncari, C. Galassi, F. Craciun, C. Capiani, and A. Piancastelli, J. Eur. Ceram. Soc. 21, 409 (2001).

    Article  Google Scholar 

  43. Z.M. Dang, T. Zhou, S.H. Yao, J.K. Yuan, J.W. Zha, H.T. Song, J.Y. Li, Q. Chen, W.T. Yang, and J. Bai, Adv. Mater. 21, 2077 (2009).

    Article  Google Scholar 

  44. Y. Yang, B.P. Zhu, Z.H. Lu, Z.Y. Wang, C.L. Fei, D. Yin, R. Xiong, J. Shi, Q.-G. Chi, and Q.Q. Lei, Appl. Phys. Lett. 102, 42904 (2013).

    Article  Google Scholar 

  45. C.V. Chanmal and J.P. Jog, Express Polym. Lett. 2, 294 (2008).

    Article  Google Scholar 

  46. R. Gregorio and E.M. Ueno, J. Mater. Sci. 34, 4489 (1999).

    Article  Google Scholar 

  47. Y.H. Li, J.J. Yuan, J. Xue, F.Y. Cai, F. Chen, and Q. Fu, Compos. Sci. Technol. 118, 198 (2015).

    Article  Google Scholar 

  48. P. Thomas, S. Satapathy, K. Dwarakanath, and K.B.R. Varma, Express Polym. Lett. 4, 632 (2010).

    Article  Google Scholar 

  49. P.I. Devi and K. Ramachandran, J. Exp. Nanosci. 6, 281 (2011).

    Article  Google Scholar 

  50. R. Aepuru and H.S. Panda, J. Phys. Chem. C 118, 18868 (2014).

    Article  Google Scholar 

  51. A. Bello, E. Laredo, and M. Grimau, Phys. Rev. B 60, 12764 (1999).

    Article  Google Scholar 

  52. K. Nakagawa and Y. Ishida, J. Polym. Sci. 11, 1503 (1973).

    Google Scholar 

  53. B. Hahn, J. Wendorff, and D.Y. Yoon, Macromolecules 18, 718 (1985).

    Article  Google Scholar 

  54. T. Ando, T. Hanada, and K. Saitoh, J. Polym. Sci. Pol. Phys. 32, 179 (1994).

    Article  Google Scholar 

  55. M. Kosec, B. Malic, W.W. Wolny, A.S. James, C. Alemany, and L. Pardo, J. Korean. Phys. Soc. 32, 1163 (1998).

    Google Scholar 

  56. W.P. Chen and H.L.W. Chan, Jpn. J. Appl. Phys. 43, 701 (2004).

    Article  Google Scholar 

  57. S. Riaz, Sajid-Ur-Rehman, M. Abutalib, and S. Naseem, J. Electron. Mater. 45, 5185 (2016).

    Article  Google Scholar 

  58. M.F. Rabuni, N.M.N. Sulaiman, M.K. Aroua, and N.A. Hashim, Ind. Eng. Chem. Res. 52, 15874 (2013).

    Article  Google Scholar 

  59. N.A. Hashim, Y.T. Liu, and K. Li, Chem. Eng. Sci. 66, 1565 (2011).

    Article  Google Scholar 

  60. S.C. Zhang, J. Shen, X.P. Qiu, D.S. Weng, and W.T. Zhu, J. Power Sources 153, 234 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Hu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, K., Hu, S., Yu, W. et al. Piezoelectric and Dielectric Properties of (0.970(0.95(K0.485Na0.515) NbO3-0.05LiSbO3)-0.015CuO-0.015Al2O3)/PVDF Composites at Different Immersing Conditions. J. Electron. Mater. 48, 5919–5932 (2019). https://doi.org/10.1007/s11664-019-07373-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07373-6

Keywords

Navigation