Skip to main content
Log in

Mechanical property heterogeneity in Inconel 718 superalloy manufactured by directed energy deposition

  • The Physics of Metal Plasticity: in honor of Professor Hussein Zbib
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Powder-based laser-directed energy deposition (L-DED) enables rapid prototyping and production of complex geometry Inconel 718 parts for structural applications. However, the heterogeneous microstructure obtained by the L-DED could lead to non-uniform mechanical properties at room temperature. Therefore, evaluating the local heterogeneity in mechanical properties of L-DED manufactured Inconel 718 superalloy is important. The mechanical properties in terms of hardness and local tensile properties of Inconel 718 superalloy have been investigated within the sample volume manufactured by L-DED to determine the local variations in properties. The mechanical properties were compared under the as-deposition and standard solution treatment and aging (STA) conditions. The average hardness and tensile strength properties of L-DED Inconel 718 in as-deposition conditions were significantly lower, while the strain-to-failure is significantly higher than that of its wrought counterparts. STA leads the average mechanical properties of L-DED Inconel 718, which is equivalent to its wrought counterpart. The hardness varied along the deposition direction in as-deposited L-DED Inconel 718. Interestingly, the local variability in the hardness along the deposition direction in L-DED Inconel 718 was eliminated after STA. The tensile strength properties varied along the deposition direction and were found to be lowest near the surface. The local variation trend in tensile strength properties was the same even after STA. The local ductility followed a trend relative to the strength in L-DED Inconel 718. A careful assessment shows that local variation in the mechanical properties was significant along the deposition direction, while it was minimal along the scanning direction of L-DED Inconel 718 under as-deposition and STA conditions. The local heterogeneity in the mechanical properties in L-DED Inconel 718 is explained in terms of the respective microstructure and deformation characteristics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data and code availability

Data will be made available on request.

References

  1. Thomas A, El-Wahabi M, Cabrera JM, Prado JM (2006) High temperature deformation of Inconel 718. J Mater Process Technol 177:469–472. https://doi.org/10.1016/j.jmatprotec.2006.04.072

    Article  CAS  Google Scholar 

  2. Slama C, Abdellaoui M (2000) Structural characterization of the aged Inconel 718. J Alloy Compd 306:277–284. https://doi.org/10.1016/S0925-8388(00)00789-1

    Article  CAS  Google Scholar 

  3. Ezugwu EO, Wang ZM, Machado AR (1999) The machinability of nickel-based alloys: a review. J Mater Process Technol 86:1–16. https://doi.org/10.1016/S0924-0136(98)00314-8

    Article  Google Scholar 

  4. Rahman M, Seah WKH, Teo TT (1997) The machinability of inconel 718. J Mater Process Technol 63:199–204. https://doi.org/10.1016/S0924-0136(96)02624-6

    Article  Google Scholar 

  5. Dudzinski D, Devillez A, Moufki A, Larrouquère D, Zerrouki V, Vigneau J (2004) A review of developments towards dry and high speed machining of Inconel 718 alloy. Int J Mach Tools Manuf 44:439–456. https://doi.org/10.1016/S0890-6955(03)00159-7

    Article  Google Scholar 

  6. Kumar P, Farah J, Akram J, Teng C, Ginn J, Misra M (2019) Influence of laser processing parameters on porosity in Inconel 718 during additive manufacturing. Int J Adv Manuf Technol 103:1497–1507. https://doi.org/10.1007/s00170-019-03655-9

    Article  Google Scholar 

  7. Pratheesh Kumar S, Elangovan S, Mohanraj R, Ramakrishna JR (2021) A review on properties of Inconel 625 and Inconel 718 fabricated using direct energy deposition. Mater Today Proc 46:7892–7906. https://doi.org/10.1016/j.matpr.2021.02.566

    Article  CAS  Google Scholar 

  8. Jinoop AN, Paul CP, Mishra SK, Bindra KS (2019) Laser Additive Manufacturing using directed energy deposition of Inconel-718 wall structures with tailored characteristics. Vacuum 166:270–278. https://doi.org/10.1016/j.vacuum.2019.05.027

    Article  CAS  Google Scholar 

  9. Zhong C, Gasser A, Backes G, Fu J, Schleifenbaum JH (2022) Laser additive manufacturing of Inconel 718 at increased deposition rates. Mater Sci Eng A 844:143196. https://doi.org/10.1016/j.msea.2022.143196

    Article  CAS  Google Scholar 

  10. Bambach M, Sizova I, Kies F, Haase C (2021) Directed energy deposition of Inconel 718 powder, cold and hot wire using a six-beam direct diode laser set-up. Addit Manuf 47:102269. https://doi.org/10.1016/j.addma.2021.102269

    Article  CAS  Google Scholar 

  11. Li Z, Sui S, Ma X, Tan H, Zhong C, Bi G, Clare AT, Gasser A, Chen J (2022) High deposition rate powder- and wire-based laser directed energy deposition of metallic materials: a review. Int J Mach Tools Manuf 181:103942. https://doi.org/10.1016/j.ijmachtools.2022.103942

    Article  Google Scholar 

  12. Svetlizky D, Das M, Zheng B, Vyatskikh AL, Bose S, Bandyopadhyay A, Schoenung JM, Lavernia EJ, Eliaz N (2021) Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications. Mater Today. https://doi.org/10.1016/j.mattod.2021.03.020

    Article  Google Scholar 

  13. Onuike B, Bandyopadhyay A (2019) Additive manufacturing in repair: influence of processing parameters on properties of Inconel 718. Mater Lett 252:256–259. https://doi.org/10.1016/j.matlet.2019.05.114

    Article  CAS  Google Scholar 

  14. Mueller M, Franz K, Riede M, López E, Brueckner F, Leyens C (2023) Influence of process parameter variation on the microstructure of thin walls made of Inconel 718 deposited via laser-based directed energy deposition with blown powder. J Mater Sci 58:11310–11326. https://doi.org/10.1007/s10853-023-08706-x

    Article  CAS  Google Scholar 

  15. Corbin DJ, Nassar AR, Reutzel EW, Beese AM, Kistler NA (2017) Effect of directed energy deposition processing parameters on laser deposited Inconel® 718: external morphology. J Laser Appl 29:022001. https://doi.org/10.2351/1.4977476

    Article  CAS  Google Scholar 

  16. Kim J-H, Oh W-J, Lee C-M, Kim D-H (2022) Achieving optimal process design for minimizing porosity in additive manufacturing of Inconel 718 using a deep learning-based pore detection approach. Int J Adv Manuf Technol 121:2115–2134. https://doi.org/10.1007/s00170-022-09372-0

    Article  Google Scholar 

  17. Xu L, Chai Z, Chen H, Zhang X, Xie J, Chen X (2021) Tailoring Laves phase and mechanical properties of directed energy deposited Inconel 718 thin-wall via a gradient laser power method. Mater Sci Eng A 824:141822. https://doi.org/10.1016/j.msea.2021.141822

    Article  CAS  Google Scholar 

  18. Zhao X, Chen J, Lin X, Huang W (2008) Study on microstructure and mechanical properties of laser rapid forming Inconel 718. Mater Sci Eng A 478:119–124. https://doi.org/10.1016/j.msea.2007.05.079

    Article  CAS  Google Scholar 

  19. Chen B, Mazumder J (2017) Role of process parameters during additive manufacturing by direct metal deposition of Inconel 718. Rapid Prototyp J 23:919–929. https://doi.org/10.1108/RPJ-05-2016-0071

    Article  Google Scholar 

  20. Hosseini E, Popovich VA (2019) A review of mechanical properties of additively manufactured Inconel 718. Addit Manuf 30:100877. https://doi.org/10.1016/j.addma.2019.100877

    Article  CAS  Google Scholar 

  21. Li S-H, Kumar P, Chandra S, Ramamurty U (2023) Directed energy deposition of metals: processing, microstructures, and mechanical properties. Int Mater Rev 68:605–647. https://doi.org/10.1080/09506608.2022.2097411

    Article  CAS  Google Scholar 

  22. Paul CP, Ganesh P, Mishra SK, Bhargava P, Negi J, Nath AK (2007) Investigating laser rapid manufacturing for Inconel-625 components. Opt Laser Technol 39:800–805. https://doi.org/10.1016/j.optlastec.2006.01.008

    Article  Google Scholar 

  23. Zhong C, Gasser A, Schopphoven T, Poprawe R (2015) Experimental study of porosity reduction in high deposition-rate laser material deposition. Opt Laser Technol 75:87–92. https://doi.org/10.1016/j.optlastec.2015.06.016

    Article  CAS  Google Scholar 

  24. Wang X, Chou K (2017) Electron backscatter diffraction analysis of Inconel 718 parts fabricated by selective laser melting additive manufacturing. JOM 69:402–408. https://doi.org/10.1007/s11837-016-2198-1

    Article  CAS  Google Scholar 

  25. Liu F, Lin X, Huang C, Song M, Yang G, Chen J, Huang W (2011) The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718. J Alloy Compd 509:4505–4509. https://doi.org/10.1016/j.jallcom.2010.11.176

    Article  CAS  Google Scholar 

  26. Martin N, Hor A, Copin E, Lours P, Ratsifandrihana L (2022) Correlation between microstructure heterogeneity and multi-scale mechanical behavior of hybrid LPBF-DED Inconel 625. J Mater Process Technol 303:117542. https://doi.org/10.1016/j.jmatprotec.2022.117542

    Article  CAS  Google Scholar 

  27. Zeng Y, Li L, Huang W, Zhao Z, Yang W, Yue Z (2022) Effect of thermal cycles on laser direct energy deposition repair performance of nickel-based superalloy: microstructure and tensile properties. Int J Mech Sci 221:107173. https://doi.org/10.1016/j.ijmecsci.2022.107173

    Article  Google Scholar 

  28. Zhu L, Xu ZF, Liu P, Gu YF (2018) Effect of processing parameters on microstructure of laser solid forming Inconel 718 superalloy. Opt Laser Technol 98:409–415. https://doi.org/10.1016/j.optlastec.2017.08.027

    Article  CAS  Google Scholar 

  29. Parimi LL, Ravi GA, Clark D, Attallah MM (2014) Microstructural and texture development in direct laser fabricated IN718. Mater Charact 89:102–111. https://doi.org/10.1016/j.matchar.2013.12.012

    Article  CAS  Google Scholar 

  30. Tian Y, McAllister D, Colijn H, Mills M, Farson D, Nordin M, Babu S (2014) Rationalization of microstructure heterogeneity in Inconel 718 builds made by the direct laser additive manufacturing process. Metall Mater Trans A 45:4470–4483

    Article  CAS  Google Scholar 

  31. Alhuzaim A, Imbrogno S, Attallah MM (2021) Controlling microstructural and mechanical properties of direct laser deposited Inconel 718 via laser power. J Alloy Compd 872:159588. https://doi.org/10.1016/j.jallcom.2021.159588

    Article  CAS  Google Scholar 

  32. Stevens EL, Toman J, To AC, Chmielus M (2017) Variation of hardness, microstructure, and Laves phase distribution in direct laser deposited alloy 718 cuboids. Mater Des 119:188–198. https://doi.org/10.1016/j.matdes.2017.01.031

    Article  CAS  Google Scholar 

  33. Liu F, Lin X, Leng H, Cao J, Liu Q, Huang C, Huang W (2013) Microstructural changes in a laser solid forming Inconel 718 superalloy thin wall in the deposition direction. Opt Laser Technol 45:330–335. https://doi.org/10.1016/j.optlastec.2012.06.028

    Article  CAS  Google Scholar 

  34. Jia T, Zou B, Liu W, Lei T, Ding H (2023) Effect of process parameters on mechanical properties of Inconel718 superalloy fabricated by directional energy deposition. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-023-10854-y

    Article  Google Scholar 

  35. Blackwell PL (2005) The mechanical and microstructural characteristics of laser-deposited IN718. J Mater Process Technol 170:240–246. https://doi.org/10.1016/j.jmatprotec.2005.05.005

    Article  CAS  Google Scholar 

  36. Qi H, Azer M, Ritter A (2009) Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured Inconel 718. Metall Mater Trans A 40:2410–2422. https://doi.org/10.1007/s11661-009-9949-3

    Article  CAS  Google Scholar 

  37. Chechik L, Christofidou KA, Markanday JFS, Goodall AD, Miller JR, West G, Stone H, Todd I (2022) Hardness variation in inconel 718 produced by laser directed energy deposition. Materialia 26:101643. https://doi.org/10.1016/j.mtla.2022.101643

    Article  CAS  Google Scholar 

  38. Al-Lami J, Hoang P, Davies C, Pirzada T, Pham M-S (2023) Plastic inhomogeneity and crack initiation in hybrid wrought: additively manufactured Inconel 718. Mater Charact 199:112815. https://doi.org/10.1016/j.matchar.2023.112815

    Article  CAS  Google Scholar 

  39. Kwabena Adomako N, Haghdadi N, Primig S (2022) Electron and laser-based additive manufacturing of Ni-based superalloys: a review of heterogeneities in microstructure and mechanical properties. Mater Design 223:111245. https://doi.org/10.1016/j.matdes.2022.111245

    Article  CAS  Google Scholar 

  40. Yang H, Yang J, Huang W, Wang Z, Zeng X (2018) The printability, microstructure, crystallographic features and microhardness of selective laser melted Inconel 718 thin wall. Mater Des 156:407–418. https://doi.org/10.1016/j.matdes.2018.07.007

    Article  CAS  Google Scholar 

  41. Tabernero I, Lamikiz A, Martínez S, Ukar E, Figueras J (2011) Evaluation of the mechanical properties of Inconel 718 components built by laser cladding. Int J Mach Tools Manuf 51:465–470. https://doi.org/10.1016/j.ijmachtools.2011.02.003

    Article  Google Scholar 

  42. Ning J, Yan Z, Zhu L, Zhao J, Yang Z, Wang S, Xue P, Xin B (2022) Process-induced mechanical property heterogeneity along the building direction of directed energy deposited IN718 thin-walled parts. Int J Mech Sci 218:107075. https://doi.org/10.1016/j.ijmecsci.2022.107075

    Article  Google Scholar 

  43. Li Z, Chen J, Sui S, Zhong C, Lu X, Lin X (2020) The microstructure evolution and tensile properties of Inconel 718 fabricated by high-deposition-rate laser directed energy deposition. Addit Manuf 31:100941. https://doi.org/10.1016/j.addma.2019.100941

    Article  CAS  Google Scholar 

  44. Yeoh YC, Macchi G, Jain E, Gaskey B, Raman S, Tay G, Verdi D, Patran A, Grande AM, Seita M (2021) Multiscale microstructural heterogeneity and mechanical property scatter in Inconel 718 produced by directed energy deposition. J Alloy Compd 887:161426. https://doi.org/10.1016/j.jallcom.2021.161426

    Article  CAS  Google Scholar 

  45. Kumara C, Balachandramurthi AR, Goel S, Hanning F, Moverare J (2020) Toward a better understanding of phase transformations in additive manufacturing of alloy 718. Materialia 13:100862. https://doi.org/10.1016/j.mtla.2020.100862

    Article  CAS  Google Scholar 

  46. Li Z, Ma X, Zhong C, Sui S, Gasser A, Chen J (2022) Microstructure homogeneity and mechanical property improvement of Inconel 718 alloy fabricated by high-deposition-rate laser directed energy deposition. Mater Sci Eng A 832:142430. https://doi.org/10.1016/j.msea.2021.142430

    Article  CAS  Google Scholar 

  47. Kumar P, Ravi Chandran KS, Cao F, Koopman M, Fang ZZ (2016) The nature of tensile ductility as controlled by extreme-sized pores in powder metallurgy Ti–6Al–4V Alloy. Metall Mater Trans A 47:2150–2161. https://doi.org/10.1007/s11661-016-3419-5

    Article  CAS  Google Scholar 

  48. Shamsaei N, Yadollahi A, Bian L, Thompson SM (2015) An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control. Addit Manuf. 8:12–35. https://doi.org/10.1016/j.addma.2015.07.002

    Article  Google Scholar 

  49. Choi J-P, Shin G-H, Yang S, Yang D-Y, Lee J-S, Brochu M, Yu J-H (2017) Densification and microstructural investigation of Inconel 718 parts fabricated by selective laser melting. Powder Technol 310:60–66. https://doi.org/10.1016/j.powtec.2017.01.030

    Article  CAS  Google Scholar 

  50. Ding RG, Huang ZW, Li HY, Mitchell I, Baxter G, Bowen P (2015) Electron microscopy study of direct laser deposited IN718. Mater Charact 106:324–337. https://doi.org/10.1016/j.matchar.2015.06.017

    Article  CAS  Google Scholar 

  51. Yu X, Lin X, Liu F, Wang L, Tang Y, Li J, Zhang S, Huang W (2020) Influence of post-heat-treatment on the microstructure and fracture toughness properties of Inconel 718 fabricated with laser directed energy deposition additive manufacturing. Mater Sci Eng A 798:140092

    Article  CAS  Google Scholar 

  52. Calandri M, Yin S, Aldwell B, Calignano F, Lupoi R, Ugues D (2019) Texture and microstructural features at different length scales in Inconel 718 produced by selective laser melting. Materials 12:1293. https://doi.org/10.3390/ma12081293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li P, Zhou J, Gong Y, Meng X, Lu J (2021) Effect of post-heat treatment on the microstructure and mechanical properties of laser metal deposition Inconel 718. J Mech Sci Technol 35:2871–2878. https://doi.org/10.1007/s12206-021-0610-4

    Article  Google Scholar 

  54. Zhang Y, Li Z, Nie P, Wu Y (2013) Effect of heat treatment on niobium segregation of laser-cladded IN718 alloy coating. Metall Mater Trans A 44:708–716. https://doi.org/10.1007/s11661-012-1459-z

    Article  CAS  Google Scholar 

  55. Zhang Y, Yang L, Chen T, Zhang W, Huang X, Dai J (2017) Investigation on the optimized heat treatment procedure for laser fabricated IN718 alloy. Opt Laser Technol 97:172–179. https://doi.org/10.1016/j.optlastec.2017.06.027

    Article  CAS  Google Scholar 

  56. Sui S, Chen J, Li Z, Li H, Zhao X, Tan H (2020) Investigation of dissolution behavior of laves phase in inconel 718 fabricated by laser directed energy deposition. Addit Manuf 32:101055. https://doi.org/10.1016/j.addma.2020.101055

    Article  CAS  Google Scholar 

  57. Huang SG, Vanmeensel K, Mohrbacher H, Woydt M, Vleugels J (2015) Microstructure and mechanical properties of NbC-matrix hardmetals with secondary carbide addition and different metal binders. Int J Refract Metal Hard Mater 48:418–426. https://doi.org/10.1016/j.ijrmhm.2014.10.014

    Article  CAS  Google Scholar 

  58. Tucho WM, Cuvillier P, Sjolyst-Kverneland A, Hansen V (2017) Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment. Mater Sci Eng A 689:220–232. https://doi.org/10.1016/j.msea.2017.02.062

    Article  CAS  Google Scholar 

  59. Tabaie S, Rézaï-Aria F, Jahazi M (2020) Microstructure evolution of selective laser melted Inconel 718: influence of high heating rates. Metals 10:587. https://doi.org/10.3390/met10050587

    Article  CAS  Google Scholar 

  60. Olovsjö S, Wretland A, Sjöberg G (2010) The effect of grain size and hardness of wrought alloy 718 on the wear of cemented carbide tools. Wear 268:1045–1052. https://doi.org/10.1016/j.wear.2010.01.017

    Article  CAS  Google Scholar 

  61. Schirra JJ (1997) Effect of heat treatment variations on the hardness and mechanical properties of wrought Inconel 718. Superalloys 718:431–438

    Google Scholar 

  62. Zhai Y, Lados DA, Brown EJ, Vigilante GN (2019) Understanding the microstructure and mechanical properties of Ti–6Al–4V and Inconel 718 alloys manufactured by laser engineered net shaping. Addit Manuf 27:334–344

    CAS  Google Scholar 

  63. Soffel F, Eisenbarth D, Hosseini E, Wegener K (2021) Interface strength and mechanical properties of Inconel 718 processed sequentially by casting, milling, and direct metal deposition. J Mater Process Technol 291:117021

    Article  CAS  Google Scholar 

  64. Mazzucato F, Forni D, Valente A, Cadoni E (2021) Laser metal deposition of Inconel 718 alloy and as-built mechanical properties compared to casting. Materials 14:437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhu L, Xu Z, Gu Y (2018) Effect of laser power on the microstructure and mechanical properties of heat treated Inconel 718 superalloy by laser solid forming. J Alloy Compd 746:159–167. https://doi.org/10.1016/j.jallcom.2018.02.268

    Article  CAS  Google Scholar 

  66. El-Bagoury N, Matsuba T, Yamamoto K, Miyahara H, Ogi K (2005) Influence of heat treatment on the distribution of Ni2Nb and microsegregation in cast Inconel 718 alloy. Mater Trans 46:2478–2483. https://doi.org/10.2320/matertrans.46.2478

    Article  CAS  Google Scholar 

  67. Jelvani S, Shoja Razavi R, Barekat M, Dehnavi MR, Erfanmanesh M (2019) Evaluation of solidification and microstructure in laser cladding Inconel 718 superalloy. Opt Laser Technol 120:105761. https://doi.org/10.1016/j.optlastec.2019.105761

    Article  CAS  Google Scholar 

  68. Rao GA, Kumar M, Srinivas M, Sarma DS (2003) Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718. Mater Sci Eng A 355:114–125. https://doi.org/10.1016/S0921-5093(03)00079-0

    Article  CAS  Google Scholar 

  69. Zhang D, Niu W, Cao X, Liu Z (2015) Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy. Mater Sci Eng A 644:32–40. https://doi.org/10.1016/j.msea.2015.06.021

    Article  CAS  Google Scholar 

  70. Sui S, Tan H, Chen J, Zhong C, Li Z, Fan W, Gasser A, Huang W (2019) The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing. Acta Mater 164:413–427. https://doi.org/10.1016/j.actamat.2018.10.032

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research is partially supported by the New Mexico Space Grant Consortium. The authors greatly acknowledge Optomec Inc. for providing the samples for the present study and Thomas J. Lienert from Optomec for the heat treatment cycle discussion. The authors also acknowledge Md Mehadi Hassan for helping with the tensile testing. PK acknowledges the startup fund for this work.

Author information

Authors and Affiliations

Authors

Contributions

LA was involved in experiments and data collection, SB helped in experiments and data collection, TK contributed to experimental design and data analysis, PK was involved in experiment design, data analysis, and manuscript writing.

Corresponding author

Correspondence to Pankaj Kumar.

Ethics declarations

Conflict of interest

No conflicts of interest exist.

Ethical approval

Not Applicable.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqawasmi, L., Bijjala, S.T., Khraishi, T. et al. Mechanical property heterogeneity in Inconel 718 superalloy manufactured by directed energy deposition. J Mater Sci 59, 5047–5065 (2024). https://doi.org/10.1007/s10853-023-09249-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09249-x

Navigation