Skip to main content
Log in

Rationalization of Microstructure Heterogeneity in INCONEL 718 Builds Made by the Direct Laser Additive Manufacturing Process

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Simulative builds, typical of the tip-repair procedure, with matching compositions were deposited on an INCONEL 718 substrate using the laser additive manufacturing process. In the as-processed condition, these builds exhibit spatial heterogeneity in microstructure. Electron backscattering diffraction analyses showed highly misoriented grains in the top region of the builds compared to those of the lower region. Hardness maps indicated a 30 pct hardness increase in build regions close to the substrate over those of the top regions. Detailed multiscale characterizations, through scanning electron microscopy, electron backscattered diffraction imaging, high-resolution transmission electron microscopy, and ChemiSTEM, also showed microstructure heterogeneities within the builds in different length scales including interdendritic and interprecipitate regions. These multiscale heterogeneities were correlated to primary solidification, remelting, and solid-state precipitation kinetics of γ″ induced by solute segregation, as well as multiple heating and cooling cycles induced by the laser additive manufacturing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. INCONEL 718 and 706 is a trademark of Special Metals Corporation, New Hartford, NY.

  2. LECO is a trademark of LECO Corporation, St. Joseph, MI.

  3. Olympus GX51 is a trademark of Olympus (http://www.olympusims.com/en/microscope/gx51/).

  4. Philips is a trademark of FEI Company, Hillsboro, OR.

  5. TITAN3 is a trademark of FEI Company, Hillsboro, OR.

  6. ChemiSTEM is a trademark of FEI Company, Hillsboro, OR.

  7. It is important to note that the identification of Laves phase is purely based on composition and not on any diffraction evidence. Our attempts to extract these phases consistently for XRD or focused ion-beam extraction were not successful due to the large heterogeneity. Therefore, this identification has to be considered as tentative.

  8. JMATPRO is a trademark of Sun Microsystems, Inc.

References

  1. E.A. Loria: Proc. Superalloy 718, Pittsburgh, 1989, TMS, Warrendale, PA, 1989.

  2. J.F. Barker: Superalloy 718 Metallurgy and Application, TMS, Warrendale, PA, 1989, pp. 269–78.

    Book  Google Scholar 

  3. R.E. Schafrik, D.D Ward, and J.R. Groh: in Superalloys 718, 625, 706, and Various Derivatives, E.A. Loria, ed., TMS, Warrendale, PA, 2001, pp. 1–11.

  4. D.F. Paulonis and J.J. Schirra: in Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Warrendale, PA, 2001, pp. 13–23.

  5. J.P. Collier, S.H. Wong, J.C. Phillips, and J.K. Tien: Metall. Trans. A, 1988, vol. 19A, pp. 657–67.

    Google Scholar 

  6. A. Devaux, L. Nazé, R. Molins, A. Pineau, A. Organista, J.Y. Guédou, J.F. Uginet, and P. Héritier: Mater. Sci. Eng. A, 2006, vol. A486, pp. 117–22.

  7. X. Xie, Q. Liang, J. Dong, W. Meng, and Z. Xu: in Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Warrendale, PA, 1994, pp. 711–20.

  8. M.K. Miller, S.S. Babu, and M.G. Burke: Mater. Sci. Eng. A, 1999, vol. A270, pp. 14–18.

    Article  Google Scholar 

  9. M.K. Miller, S.S. Babu, and M.G. Burke: Mater. Sci. Eng. A, 2002, vol. A327, pp. 84–88.

    Article  Google Scholar 

  10. R. Cozar and A. Pineau: Metall. Trans., 1973, vol. 4, pp. 47–59.

    Article  Google Scholar 

  11. W.T. Geng, D.H. Ping, Y.F. Gu, C.Y. Cui, and H. Harada: Phys. Rev. B, 2007, vol. 76, pp. 2241021–10.

  12. P.J. Phillips, D. McAllister, Y. Gao, D. Lv, R.E.A. Williams, B. Peterson, Y. Wang, and M.J. Mills: App. Phys. Lett., 2012, vol. 100, pp. 211913-1–211913-3.

  13. J.L. Burger, R.R. Biederman, and W.H. Cuuts: Superalloy 718—Metallurgy and Applications, E.A. Loria, ed., TMS, Warrendale, PA, 1989, pp. 207–17.

  14. T. Alam M. Chaturvedi, S.P. Ringer, and J. Cairney: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7770–74.

    Article  Google Scholar 

  15. V. Kndrachuk, N. Wanferka, and J. Banhart: Mater. Sci. Eng. A, 2006, vol. 417, pp. 82–89.

    Article  Google Scholar 

  16. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe: Int. Mater. Rev., 2012, vol. 57, pp. 133–64.

    Article  Google Scholar 

  17. J. Andersson and G.P. Sjöberg: Sci. Technol. Weld. Join., 2012, vol. 7, pp. 49–59.

    Article  Google Scholar 

  18. K. Makiewicz, S.S. Babu, M. Keller, and A. Chaudhary: Unpublished research, 2012.

  19. J.E. Flinkfeldt and T.F. Pedersen: Mater. Sci. Forum, 1994, vols. 163–165, pp. 423–28.

    Article  Google Scholar 

  20. W. König and P.K. Kirner: Proc. Laser Materials Processing: Industrial and Microelectronics Applications, SPIE, Bellingham, WA, 1994, vol. 2207, pp. 44–52.

  21. M. Riabkina-Fishman and J. Zahavi: Lasers Eng., 1996, vol. 5, pp. 31–41.

    Google Scholar 

  22. A. Chaudhary: ASM Handbook, 2010, vol. 22B, pp. 240–52.

  23. C. Zhang, L. Li, and A. Deceuster: J. Mater. Process. Technol., 2011, vol. 211, pp. 1478–87.

  24. J. Ding, P. Colegrove, J. Mehnen, S. Ganguly, P.M. Sequeira Almeida, F. Wang, and S. Williams: Computat. Mater. Sci., 2011, vol. 50, pp. 3315–24.

    Article  Google Scholar 

  25. A. Lundbäck and L.-E. Lindgren: Fin. Elem. Anal. Design, 2001, vol. 47, pp. 1169–77.

    Article  Google Scholar 

  26. M. Chiumenti, M. Cervera, A. Salmi, C. Agelet de Saracibar, N. Dialami, and K. Matsui: Comput. Methods Appl. Mech. Eng., 2010, vol. 199, pp. 2343–59.

  27. “Guide for Verification and Validation in Computation Weld Mechanics,” AWS A9.5: 2013, American Welding Society, Miami, FL, 2013.

  28. K. Makiewicz: Master’s Thesis, The Ohio State University, Columbus, OH, 2013.

  29. H. Qi, M. Azer, and A. Ritter: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2410–22.

    Article  Google Scholar 

  30. Xiaoming Zhao, Jing Chen, Xin Lin, and Weidong Huang: Mater. Sci. Eng. A, 2008, vol. 478, pp. 119–24.

    Article  Google Scholar 

  31. Fencheng Liu, Xin Lin, Chunping Huang, Menghua Song, Gaolin Yang, Jing Chen, and Weidong Huang: J. Alloys Compd., 2011, vol. 509, pp. 4505–09.

    Article  Google Scholar 

  32. K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, and F. Medina: Acta Mater., 2012, vol. 60, pp. 2229–39.

  33. Yaocheng Zhang, Zhuguo Li, Pulin Nie, and Yixiong Wu: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 706–18.

    Google Scholar 

  34. A. Tabernero, S. Lamikiz, E. Martínez, J. Ukar, and J. Figueras: Int. J. Mach. Tools Manufact., 2011, vol. 51, pp. 456–70.

    Article  Google Scholar 

  35. M.J. Cieslak, T.J. Headley, and A.D. Romig: Metall. Trans. A, 1986, vol. 17A, pp. 2035–47.

    Article  Google Scholar 

  36. M.J. Cieslak: Weld J., 1981, vol. 70, pp. 49–56.

    Google Scholar 

  37. G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, Jr., and W.F. Hammetter: Metall. Trans. A, 1989, vol. 20A, pp. 2149–58.

    Article  Google Scholar 

  38. J.C. Lippold, S.D. Kiser, and J.N. DuPont: Welding Metallurgy and Weldability of Nickel-Base Alloys, John Wiley and Sons Inc., New York, NY, 2009.

    Google Scholar 

  39. AMS 5596 Specification “Nickel Alloy, Corrosion and Heat Resistant, Sheet, Strip, Foil, and Plate 52.5Ni 19Cr 3.0Mo 5.1Cb 0.90Ti 0.50Al 18Fe Consumable Electrode or Vacuum Induction Melted, 1775°F (968 °C) Solution Heat Treated,” AMS, SAE International, Oct. 2012. http://standards.sae.org/ams5596k/.

  40. W. Kurz, C. Bezencon, and M. Gaumann: Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 185–91.

    Article  Google Scholar 

  41. J.M. Vitek: Acta Mater., 2005, vol. 53, pp. 53–67.

    Article  Google Scholar 

  42. J.-W. Park, J.M. Vitek, S.S. Babu, and S.A. David: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 472–82.

    Article  Google Scholar 

  43. T.D. Anderson and J.N. DuPont: Weld. J., 2011, vol. 90, pp. 27s–31s.

    Google Scholar 

  44. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: Nat. Methods, 2012, vol. 9, pp. 671–75.

    Article  Google Scholar 

  45. R. Rosenthal and D.R.F. West: Mater. Sci. Technol., 1999, vol. 15, pp. 1387–94.

    Article  Google Scholar 

  46. S.S. Babu: Int. Mater. Rev., 2009, vol. 54, pp. 333–67.

    Article  Google Scholar 

  47. R. Nakkalil, N.L. Richards, and M.C. Chaturvedi: Metall. Trans. A, 1993, vol. 24A, pp. 1169–79.

    Article  Google Scholar 

  48. S.M. Seo, J.H. Lee, Y.S. Yoo, C.Y. Jo, H. Miyahara, and K. Ogi: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3150–59.

    Article  Google Scholar 

  49. O.A. Ojo, N.L. Richards, and M.C. Chaturvedi: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 421–33.

    Article  Google Scholar 

  50. B. Radhakrishan and R.G. Thompson: Metall. Trans. A, 1991, vol. 22A, pp. 887–902.

    Article  Google Scholar 

  51. O.A. Ojo and F. Tancret: Computat. Mater. Sci., 2009, vol. 45, pp. 388–89.

    Article  Google Scholar 

Download references

Acknowledgments

This research was performed within the Center for Integrative Materials Joining Science for Energy Applications (CIMJSEA), and the authors thank the Rolls Royce Corporation for supporting this project. This material is based upon work supported by the National Science Foundation under Grant No. 1034729. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudarsanam Babu.

Additional information

Manuscript submitted September 1, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., McAllister, D., Colijn, H. et al. Rationalization of Microstructure Heterogeneity in INCONEL 718 Builds Made by the Direct Laser Additive Manufacturing Process. Metall Mater Trans A 45, 4470–4483 (2014). https://doi.org/10.1007/s11661-014-2370-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2370-6

Keywords

Navigation