Skip to main content
Log in

Oxidation Performance of Inconel 718 Alloy Fabricated by Directed Energy Deposition

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Directed energy deposition (DED) is an additive manufacturing process that uses a focused energy source, such as a laser, to melt and deposit material layer-by-layer to create 3D complex parts. This study investigated the effects of laser power on the microstructure, hardness, and oxidation performance of IN718 superalloy fabricated via DED process. The DED-processed samples underwent heat treatment (solution treatment and ageing) and were compared with the as-built counterpart, as a baseline for this experimental analysis. Microstructural characterization utilized an optical microscope and a field emission scanning electron microscope (FESEM). Vickers microhardness measurements were performed. In situ thermogravimetric analysis (TGA) was conducted at 850 °C for 5 h, followed by SEM characterization. The findings revealed microstructural variations in the as-built samples with increasing laser power. As-built samples have a dendritic microstructure with fine equiaxed grains. The solutionizing heat treatment dissolves and redistributes the γ″ and γ′ precipitates, resulting in a more uniform and stable microstructure. Aged samples have a uniform distribution of large and uniform coherent γ″ and γ′ precipitates. Hardness values remain relatively unchanged in as-built samples, but aged samples exhibit increased hardness due to the formation of precipitates during heat treatment. The study also found that, in the as-built condition, the sample produced with the lowest laser power had the highest oxidation resistance, while the solutionized and aged samples produced with higher laser power had better oxidation resistance due to the formation of protective oxide layers and precipitates. This study provides insights for optimizing process parameters and heat treatments to enhance the performance of DED-fabricated IN718 alloy components for high-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Patel, J. DeBarbadillo, and S. Coryell, Superalloy 718: Evolution of the Alloy from High to Low Temperature Application, Miner. Met. Mater. Ser., 2018, 2018, p 23–49. https://doi.org/10.1007/978-3-319-89480-5_2/COVER

    Article  Google Scholar 

  2. Q. Zhang, J. Zhang, Y. Zhuang, J. Lu, and J. Yao, Hot Corrosion and Mechanical Performance of Repaired Inconel 718 Components via Laser Additive Manufacturing, Materials, 2020, 13(9), p 2128. https://doi.org/10.3390/MA13092128

    Article  CAS  Google Scholar 

  3. F. Mazzucato, D. Forni, A. Valente, and E. Cadoni, Laser Metal Deposition of Inconel 718 Alloy and As-Built Mechanical Properties Compared to Casting, Materials, 2021, 14(2), p 437. https://doi.org/10.3390/MA14020437

    Article  CAS  Google Scholar 

  4. M. Shahwaz, P. Nath, and I. Sen, A Critical Review on the Microstructure and Mechanical Properties Correlation of Additively Manufactured Nickel-Based Superalloys, J. Alloys Compd., 2022, 907, p 164530.

    Article  CAS  Google Scholar 

  5. K. Zhuang, C. Hu, J. Zhou, and R. Lin Peng, Investigation on Work Hardening Phenomenon in Turning Inconel 718 with Chamfered Inserts Considering Thermal-Mechanical Loads, Procedia CIRP, 2020, 87, p 47–52.

    Article  Google Scholar 

  6. O. Pereira, A. Celaya, G. Urbikaín, A. Rodríguez, A. Fernández-Valdivielso, and L. de Noberto López Lacalle, CO2 Cryogenic Milling of Inconel 718: Cutting Forces and Tool Wear, J. Mater. Res. Technol., 2020, 9(4), p 8459–8468.

    Article  CAS  Google Scholar 

  7. P.K. Diljith, A.N. Jinoop, C.P. Paul, P. Krishna, S. Bontha, and K.S. Bindra, Understanding the Corrosion Behaviour of Laser Directed Energy Deposition-Based Additive Manufacturing Built Inconel 718 under Acidic Environments, Prog. Addit. Manuf., 2021, 6(3), p 395–406. https://doi.org/10.1007/S40964-021-00176-4/FIGURES/7

    Article  Google Scholar 

  8. Z.C. Fang, Z.L. Wu, C.G. Huang, and C.W. Wu, Review on Residual Stress in Selective Laser Melting Additive Manufacturing of Alloy Parts, Opt. Laser Technol., 2020, 129, p 106283.

    Article  CAS  Google Scholar 

  9. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, The Metallurgy and Processing Science of Metal Additive Manufacturing, Int. Mater. Rev., 2016, 61(5), p 315–360. https://doi.org/10.1080/09506608.2015.1116649

    Article  CAS  Google Scholar 

  10. A. Saboori, A. Aversa, G. Marchese, S. Biamino, M. Lombardi, and P. Fino, Application of Directed Energy Deposition-Based Additive Manufacturing in Repair, Appl. Sci., 2019, 9(16), p 3316. https://doi.org/10.3390/APP9163316

    Article  CAS  Google Scholar 

  11. D. Svetlizky, M. Das, B. Zheng, A.L. Vyatskikh, S. Bose, A. Bandyopadhyay, J.M. Schoenung, E.J. Lavernia, and N. Eliaz, Directed Energy Deposition (DED) Additive Manufacturing: Physical Characteristics Defects, Challenges and Applications, Mater. Today, 2021, 49, p 271–295.

    Article  CAS  Google Scholar 

  12. A. Alhuzaim, S. Imbrogno, and M.M. Attallah, Controlling Microstructural and Mechanical Properties of Direct Laser Deposited Inconel 718 via Laser Power, J. Alloys Compd., 2021, 872, p 159588.

    Article  CAS  Google Scholar 

  13. T. Sanviemvongsak, D. Monceau, C. Desgranges, and B. Macquaire, Intergranular Oxidation of Ni-Base Alloy 718 with a Focus on Additive Manufacturing, Corros. Sci., 2020, 170, p 108684.

    Article  CAS  Google Scholar 

  14. M. Yunus, R.A. Alfattani, T. Alamro, and M. Asadullah, Investigations into Power Plant Alloys & Rsquo; (Inconel 718) Oxidation Resistance by Compound Composite (Cr2O3 + YSZ) Coatings, Coatings, 2023, 13(4), p 744. https://doi.org/10.3390/COATINGS13040744

    Article  CAS  Google Scholar 

  15. C.Z. Fang, H.C. Basoalto, M.J. Anderson, H.Y. Li, S.J. Williams, and P. Bowen, A Numerical Study on the Influence of Grain Boundary Oxides on Dwell Fatigue Crack Growth of a Nickel-Based Superalloy, J. Mater. Sci. Technol., 2022, 104, p 224–235.

    Article  CAS  Google Scholar 

  16. S.A. Mantri, S. Dasari, A. Sharma, T. Alam, M.V. Pantawane, M. Pole, S. Sharma, N.B. Dahotre, R. Banerjee, and S. Banerjee, Effect of Micro-Segregation of Alloying Elements on the Precipitation Behaviour in Laser Surface Engineered Alloy 718, Acta Mater., 2021, 210, p 116844.

    Article  CAS  Google Scholar 

  17. Q. Jia and D. Gu, Selective Laser Melting Additive Manufacturing of Inconel 718 Superalloy Parts: Densification Microstructure and Properties, J. Alloys Compd., 2014, 585, p 713–721.

    Article  CAS  Google Scholar 

  18. J.J. Debarbadillo and S.K. Mannan, Alloy 718 for Oilfield Applications, JOM, 2012, 64(2), p 265–270. https://doi.org/10.1007/S11837-012-0238-Z/TABLES/3

    Article  CAS  Google Scholar 

  19. D. Zhang, Z. Feng, C. Wang, W. Wang, Z. Liu, and W. Niu, Comparison of Microstructures and Mechanical Properties of Inconel 718 Alloy Processed by Selective Laser Melting and Casting, Mater. Sci. Eng. A, 2018, 724, p 357–367.

    Article  CAS  Google Scholar 

  20. H. Liu, W. Cheng, Y. Sun, R. Ma, Y. Wang, J. Bai, L. Xue, X. Song, and C. Tan, Effects of Process Parameters and Heat Treatment on Microstructure and Mechanical Characteristics of Laser Powder Bed Fusion Alloy Inconel 718, Coatings, 2023, 13(1), p 189. https://doi.org/10.3390/COATINGS13010189

    Article  CAS  Google Scholar 

  21. T. Sanviemvongsak, D. Monceau, M. Madelain, C. Desgranges, J. Smialek, and B. Macquaire, Cyclic Oxidation of Alloy 718 Produced by Additive Manufacturing Compared to a Wrought-718 Alloy, Corros. Sci., 2021, 192, p 109804.

    Article  CAS  Google Scholar 

  22. X. Zhang, H. Chen, L. Xu, J. Xu, X. Ren, and X. Chen, Cracking Mechanism and Susceptibility of Laser Melting Deposited Inconel 738 Superalloy, Mater. Des., 2019, 183, p 108105.

    Article  CAS  Google Scholar 

  23. F. Zhang, Y. Luo, S. Yang, Y. Peng, T. Yang, and J. Liu, Mechanical Properties Improvement of Nickel-Based Alloy 625 Fabricated by Powder-Fed Laser Additive Manufacturing Based on Linear Beam Oscillation, Mater. Sci. Eng. A, 2022, 842, p 143054.

    Article  CAS  Google Scholar 

  24. S. Jelvani, R. Shoja-Razavi, M. Barekat, M.R. Dehnavi, and M. Erfanmanesh, Evaluation of Solidification and Microstructure in Laser Cladding Inconel 718 Superalloy, Opt. Laser Technol., 2019, 120, p 105761.

    Article  CAS  Google Scholar 

  25. N. Hasani, C. Dharmendra, M. Sanjari, F. Fazeli, B.S. Amirkhiz, H. Pirgazi, G.D.J. Ram, and M. Mohammadi, Laser Powder Bed Fused Inconel 718 in Stress-Relieved and Solution Heat-Treated Conditions, Mater. Charact., 2021, 181, p 111499.

    Article  CAS  Google Scholar 

  26. A. Calleja, G. Urbikain, H. González, I. Cerrillo, R. Polvorosa, and A. Lamikiz, Inconel®718 Superalloy Machinability Evaluation after Laser Cladding Additive Manufacturing Process, Int. J. Adv. Manuf. Technol., 2018, 97(5–8), p 2873–2885. https://doi.org/10.1007/S00170-018-2169-5/METRICS

    Article  Google Scholar 

  27. K. Yu, W. Zhao, Z. Li, N. Guo, G. Xiao, and H. Zhang, High-Temperature Oxidation Behavior and Corrosion Resistance of in-situ TiC and Mo Reinforced AlCoCrFeNi-Based High Entropy Alloy Coatings by Laser Cladding, Ceram. Int., 2023, 49(6), p 10151–10164.

    Article  CAS  Google Scholar 

  28. Y.J. Kang, S. Yang, Y.K. Kim, B. AlMangour, and K.A. Lee, Effect of Post-Treatment on the Microstructure and High-Temperature Oxidation Behaviour of Additively Manufactured Inconel 718 Alloy, Corros. Sci., 2019, 158, p 108082.

    Article  CAS  Google Scholar 

  29. F.J. Liu, M.C. Zhang, J.X. Dong, and Y.W. Zhang, High-Temperature Oxidation of FGH96 P/M Superalloy, Acta Metall. Sin. (English Letters), 2007, 20(2), p 102–110.

    Article  CAS  Google Scholar 

  30. M. Renderos, A. Torregaray, M.E. Gutierrez-Orrantia, A. Lamikiz, N. Saintier, and F. Girot, Microstructure Characterization of Recycled IN718 Powder and Resulting Laser Clad Material, Mater. Charact., 2017, 134, p 103–113.

    Article  CAS  Google Scholar 

  31. H. Vasudev, L. Thakur, A. Bansal, H. Singh, and S. Zafar, High Temperature Oxidation and Erosion Behaviour of HVOF Sprayed Bi-Layer Alloy-718/NiCrAlY Coating, Surf. Coat. Technol., 2019, 362, p 366–380.

    Article  CAS  Google Scholar 

  32. B. Zhao, X.K. Ke, J.H. Bao, C.L. Wang, L. Dong, Y.W. Chen, and H.L. Chen, Synthesis of Flower-Like NiO and Effects of Morphology on its Catalytic Properties, J. Phys. Chem. C, 2009, 113(32), p 14440–14447. https://doi.org/10.1021/JP904186K

    Article  CAS  Google Scholar 

  33. T. Sanviemvongsak, D. Monceau, and B. Macquaire, High Temperature Oxidation of IN718 Manufactured by Laser Beam Melting and Electron Beam Melting: Effect of Surface Topography, Corros. Sci., 2018, 141, p 127–145.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to express their sincere gratitude and appreciation to Professor Moataz Attallah from the School of Metallurgy and Materials at the University of Birmingham for providing samples for study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bandar AlMangour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlGahtani, A., AlMutairi, S., Adesina, A.Y. et al. Oxidation Performance of Inconel 718 Alloy Fabricated by Directed Energy Deposition. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08785-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08785-6

Keywords

Navigation