Skip to main content

Advertisement

Log in

Evaluation of the effects of combined application of dimethylaminohexadecyl methacrylate and MDP on dentin bonding and antimicrobial properties

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the effects of the combined application of dimethylaminohexadecyl methacrylate (DMAHDM) and 10-methacryloyloxydecyl dihydrogen phosphate (MDP) on dentin bonding and its antimicrobial properties. DMAHDM was incorporated into the adhesives at 5% by mass, where two commercial adhesives were used: (1) MDP-free adhesive (single bond 2); (2) MDP-containing adhesive (single bond universal, SBU). The microtensile bond strength (μTBS) and nanoleakage were analyzed on the combination. The effects of DMAHDM on the interaction between MDP and hydroxyapatite and the degree of conversion were assessed by Fourier transform infrared spectroscopy (FTIR). Antimicrobial properties were examined by live/dead staining assay, colony-forming units (CFU), and metabolic activity, and cytotoxicity was measured using cell counting kit-8 (CCK-8) assay. 5% DMAHDM or MDP-containing groups showed increased immediate μTBS compared with the control group. Nanoleakage showed that 5% DMAHDM or MDP-containing groups presented little amount of silver penetration, while the control group exhibited extensive silver uptake along the bonding interface after water storage aging. FTIR showed that the interaction between MDP and hydroxyapatite was not affected by DMAHDM, besides DMAHDM did not hamper the polymerization of the bonding agents. The adhesives added with DMAHDM inhibited biofilm formation and reduced the biofilm CFU and metabolic activity of Candida albicans and Streptococcus mutans (P < 0.05). No cytotoxic or slight cytotoxic effect was detected for the experimental materials used (MDP and 5% DMAHDM). The addition of DMAHDM along with MDP can obtain improved dentin bonding with increased antimicrobial performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Mathur VP, Dhillon JK (2018) Dental caries: a disease which needs attention. Indian J Pediatr 85:202–206. https://doi.org/10.1007/s12098-017-2381-6

    Article  Google Scholar 

  2. Imazato S, Ma S, Chen JH, Xu HH (2014) Therapeutic polymers for dental adhesives: loading resins with bio-active components. Dent Mater 30:97–104. https://doi.org/10.1016/j.dental.2013.06.003

    Article  CAS  Google Scholar 

  3. Askar H, Krois J, Göstemeyer G, Schwendicke F (2021) Secondary caries risk of different adhesive strategies and restorative materials in permanent teeth: systematic review and network meta-analysis. J Dent 104:103541

    Article  CAS  Google Scholar 

  4. Askar H, Krois J, Göstemeyer G, Bottenberg P, Zero D, Banerjee A, Schwendicke F (2020) Secondary caries: what is it, and how it can be controlled, detected, and managed? Clin Oral Investig 24:1869–1876. https://doi.org/10.1007/s00784-020-03268-7

    Article  Google Scholar 

  5. Liu Y, Tjäderhane L, Breschi L, Mazzoni A, Li N, Mao J, Pashley DH, Tay FR (2011) Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J Dent Res 90:953–968. https://doi.org/10.1177/0022034510391799

    Article  CAS  Google Scholar 

  6. Breschi L, Maravic T, Cunha SR, Comba A, Cadenaro M, Tjäderhane L, Pashley DH, Tay FR, Mazzoni A (2018) Dentin bonding systems: from dentin collagen structure to bond preservation and clinical applications. Dent Mater 34:78–96. https://doi.org/10.1016/j.dental.2017.11.005

    Article  CAS  Google Scholar 

  7. Liang J, Liu F, Zou J, Xu HHK, Han Q, Wang Z, Li B, Yang B, Ren B, Li M, Peng X, Li J, Zhang S, Zhou X, Cheng L (2020) pH-responsive antibacterial resin adhesives for secondary caries inhibition. J Dent Res 99:1368–1376. https://doi.org/10.1177/0022034520936639

    Article  CAS  Google Scholar 

  8. Liu Y, Yang J, Yang Y, Li M, Xu HHK, Weir MD, Zhou X, Liang K, Li J (2022) Evaluation of the ability of adhesives with antibacterial and remineralization functions to prevent secondary caries in vivo. Clin Oral Investig 26:3637–3650. https://doi.org/10.1007/s00784-021-04334-4

    Article  Google Scholar 

  9. Jung JH, Kim DH, Yoo KH, Yoon SY, Kim Y, Bae MK, Chung J, Ko CC, Kwon YH, Kim YI (2019) Dentin sealing and antibacterial effects of silver-doped bioactive glass/mesoporous silica nanocomposite: an in vitro study. Clin Oral Investig 23:253–266. https://doi.org/10.1007/s00784-018-2432-z

    Article  Google Scholar 

  10. Mazurek-Popczyk J, Nowicki A, Arkusz K, Pałka Ł, Zimoch-Korzycka A, Baldy-Chudzik K (2022) Evaluation of biofilm formation on acrylic resins used to fabricate dental temporary restorations with the use of 3D printing technology. BMC Oral Health 22:442. https://doi.org/10.1186/s12903-022-02488-5

    Article  CAS  Google Scholar 

  11. Ferracane JL (2017) Models of caries formation around dental composite restorations. J Dent Res 96:364–371. https://doi.org/10.1177/0022034516683395

    Article  CAS  Google Scholar 

  12. Fan M, Li M, Yang Y, Weir MD, Liu Y, Zhou X, Liang K, Li J, Xu HHK (2022) Dual-functional adhesive containing amorphous calcium phosphate nanoparticles and dimethylaminohexadecyl methacrylate promoted enamel remineralization in a biofilm-challenged environment. Dent Mater 38:1518–1531. https://doi.org/10.1016/j.dental.2022.07.003

    Article  CAS  Google Scholar 

  13. Tao S, Su Z, Xiang Z, Xu HHK, Weir MD, Fan M, Yu Z, Zhou X, Liang K, Li J (2020) Nano-calcium phosphate and dimethylaminohexadecyl methacrylate adhesive for dentin remineralization in a biofilm-challenged environment. Dent Mater 36:e316–e328. https://doi.org/10.1016/j.dental.2020.08.001

    Article  CAS  Google Scholar 

  14. Chen H, Zhang B, Weir MD, Homayounfar N, Fay GG, Martinho F, Lei L, Bai Y, Hu T, Xu HHK (2020) S. mutans gene-modification and antibacterial resin composite as dual strategy to suppress biofilm acid production and inhibit caries. J Dent 93:103278. https://doi.org/10.1016/j.jdent.2020.103278

    Article  CAS  Google Scholar 

  15. Josic U, Maravic T, Mazzitelli C, Radovic I, Jacimovic J, Del Bianco F, Florenzano F, Breschi L, Mazzoni A (2021) Is clinical behavior of composite restorations placed in non-carious cervical lesions influenced by the application mode of universal adhesives? A systematic review and meta-analysis. Dent Mater 37:e503–e521. https://doi.org/10.1016/j.dental.2021.08.017

    Article  CAS  Google Scholar 

  16. Brackett MG, Li N, Brackett WW, Sword RJ, Qi YP, Niu LN, Pucci CR, Dib A, Pashley DH, Tay FR (2011) The critical barrier to progress in dentine bonding with the etch-and-rinse technique. J Dent 39:238–248. https://doi.org/10.1016/j.jdent.2010.12.009

    Article  CAS  Google Scholar 

  17. Fehrenbach J, Isolan CP, Münchow EA (2021) Is the presence of 10-MDP associated to higher bonding performance for self-etching adhesive systems? A meta-analysis of in vitro studies. Dent Mater 37:1463–1485. https://doi.org/10.1016/j.dental.2021.08.014

    Article  CAS  Google Scholar 

  18. Yoshihara K, Nagaoka N, Yoshida Y, Van Meerbeek B, Hayakawa S (2019) Atomic level observation and structural analysis of phosphoric-acid ester interaction at dentin. Acta Biomater 97:544–556. https://doi.org/10.1016/j.actbio.2019.08.029

    Article  CAS  Google Scholar 

  19. Ochiai Y, Inoue G, Nikaido T, Ikeda M, Tagami J (2019) Evaluation of experimental calcium-containing primer in adhesive system on micro-tensile bond strength and acid resistance. Dent Mater J 38:565–572. https://doi.org/10.4012/dmj.2018-266

    Article  CAS  Google Scholar 

  20. Elkaffas AA, Hamama HHH, Mahmoud SH (2018) Do universal adhesives promote bonding to dentin? A systematic review and meta-analysis. Restor Dent Endod 43:29. https://doi.org/10.5395/rde.2018.43.e29

    Article  Google Scholar 

  21. Elena P, Miri K (2018) Formation of contact active antimicrobial surfaces by covalent grafting of quaternary ammonium compounds. Colloids Surf B Biointerfaces 169:195–205. https://doi.org/10.1016/j.colsurfb.2018.04.065

    Article  CAS  Google Scholar 

  22. Makvandi P, Jamaledin R, Jabbari M, Nikfarjam N, Borzacchiello A (2018) Antibacterial quaternary ammonium compounds in dental materials: a systematic review. Dent Mater 34:851–867. https://doi.org/10.1016/j.dental.2018.03.014

    Article  CAS  Google Scholar 

  23. Assad-Loss TF, Vignoli JF, Garcia IM, Portela MB, Schneider LFJ, Collares FM, Cavalcante LMA, Tostes MA (2021) Physicochemical properties and biological effects of quaternary ammonium methacrylates in an experimental adhesive resin for bonding orthodontic brackets. J Appl Oral Sci 29:e20201031-98. https://doi.org/10.1590/1678-7757-2020-1031

    Article  CAS  Google Scholar 

  24. Zhang K, Baras B, Lynch CD, Weir MD, Melo MAS, Li Y, Reynolds MA, Bai Y, Wang L, Wang S, Xu HHK (2018) Developing a new generation of therapeutic dental polymers to inhibit oral biofilms and protect teeth. Materials (Basel) 11:1747. https://doi.org/10.3390/ma11091747

    Article  CAS  Google Scholar 

  25. Baras BH, Melo MAS, Sun J, Oates TW, Weir MD, Xie X, Bai Y, Xu HHK (2019) Novel endodontic sealer with dual strategies of dimethylaminohexadecyl methacrylate and nanoparticles of silver to inhibit root canal biofilms. Dent Mater 35:1117–1129. https://doi.org/10.1016/j.dental.2019.05.014

    Article  CAS  Google Scholar 

  26. Cheng L, Weir MD, Zhang K, Arola DD, Zhou X, Xu HH (2013) Dental primer and adhesive containing a new antibacterial quaternary ammonium monomer dimethylaminododecyl methacrylate. J Dent 41:345–355. https://doi.org/10.1016/j.jdent.2013.01.004

    Article  CAS  Google Scholar 

  27. Li Y, Hu X, Ruan J, Arola DD, Ji C, Weir MD, Oates TW, Chang X, Zhang K, Xu HHK (2019) Bonding durability, antibacterial activity and biofilm pH of novel adhesive containing antibacterial monomer and nanoparticles of amorphous calcium phosphate. J Dent 81:91–101. https://doi.org/10.1016/j.jdent.2018.12.013

    Article  CAS  Google Scholar 

  28. Wu J, Zhou H, Weir MD, Melo MA, Levine ED, Xu HH (2015) Effect of dimethylaminohexadecyl methacrylate mass fraction on fracture toughness and antibacterial properties of CaP nanocomposite. J Dent 43:1539–1546. https://doi.org/10.1016/j.jdent.2015.09.004

    Article  CAS  Google Scholar 

  29. Chen C, Niu LN, Xie H, Zhang ZY, Zhou LQ, Jiao K, Chen JH, Pashley DH, Tay FR (2015) Bonding of universal adhesives to dentine–Old wine in new bottles? J Dent 43:525–536. https://doi.org/10.1016/j.jdent.2015.03.004

    Article  CAS  Google Scholar 

  30. Li F, Weir MD, Chen J, Xu HH (2014) Effect of charge density of bonding agent containing a new quaternary ammonium methacrylate on antibacterial and bonding properties. Dent Mater 30:433–441. https://doi.org/10.1016/j.dental.2014.01.002

    Article  CAS  Google Scholar 

  31. Yang J, Shen J, Wu X, He F, Xie H, Chen C (2020) Effects of nano-zirconia fillers conditioned with phosphate ester monomers on the conversion and mechanical properties of Bis-GMA- and UDMA-based resin composites. J Dent 94:103306. https://doi.org/10.1016/j.jdent.2020.103306

    Article  CAS  Google Scholar 

  32. Li F, Liu XY, Zhang L, Kang JJ, Chen JH (2012) Ethanol-wet bonding technique may enhance the bonding performance of contemporary etch-and-rinse dental adhesives. J Adhes Dent 14:113–120. https://doi.org/10.3290/j.jad.a21853

    Article  CAS  Google Scholar 

  33. Tay FR, Pashley DH, Yoshiyama M (2002) Two modes of nanoleakage expression in single-step adhesives. J Dent Res 81:472–476. https://doi.org/10.1177/154405910208100708

    Article  CAS  Google Scholar 

  34. Li F, Chen J, Chai Z, Zhang L, Xiao Y, Fang M, Ma S (2009) Effects of a dental adhesive incorporating antibacterial monomer on the growth, adherence and membrane integrity of Streptococcus mutans. J Dent 37:289–296. https://doi.org/10.1016/j.jdent.2008.12.004

    Article  CAS  Google Scholar 

  35. Wang L, Melo MA, Weir MD, Xie X, Reynolds MA, Xu HH (2016) Novel bioactive nanocomposite for Class-V restorations to inhibit periodontitis-related pathogens. Dent Mater 32:e351–e361. https://doi.org/10.1016/j.dental.2016.09.023

    Article  CAS  Google Scholar 

  36. Cheng L, Exterkate RA, Zhou X, Li J, ten Cate JM (2011) Effect of Galla chinensis on growth and metabolism of microcosm biofilms. Caries Res 45:87–92. https://doi.org/10.1159/000324084

    Article  CAS  Google Scholar 

  37. Xie X, Wang L, Xing D, Zhang K, Weir MD, Liu H, Bai Y, Xu HHK (2017) Novel dental adhesive with triple benefits of calcium phosphate recharge, protein-repellent and antibacterial functions. Dent Mater 33:553–563. https://doi.org/10.1016/j.dental.2017.03.002

    Article  CAS  Google Scholar 

  38. Zhang K, Melo MA, Cheng L, Weir MD, Bai Y, Xu HH (2012) Effect of quaternary ammonium and silver nanoparticle-containing adhesives on dentin bond strength and dental plaque microcosm biofilms. Dent Mater 28:842–852. https://doi.org/10.1016/j.dental.2012.04.027

    Article  CAS  Google Scholar 

  39. Karayazgan B, Atay A, Saracli MA, Gunay Y (2010) Evaluation of Candida albicans formation on feldspathic porcelain subjected to four surface treatment methods. Dent Mater J 29:147–153. https://doi.org/10.4012/dmj.2009-016

    Article  CAS  Google Scholar 

  40. Martins CHG, Pires RH, Cunha AO, Pereira CAM, Singulani JL, Abrão F, Moraes T, Mendes-Giannini MJS (2016) Candida/Candida biofilms. First description of dual-species Candida albicans/C. rugosa biofilm. Fungal Biol 120:530–537. https://doi.org/10.1016/j.funbio.2016.01.013

    Article  Google Scholar 

  41. International Organization for Standardization: ISO 10993–5 (2009) Biological evaluation of medical devices - part 5: tests for in vitro cytotoxicity.

  42. International Organization for Standardization: ISO 10993–12 (2021) Biological evaluation of medical devices - Part 12: sample preparation and reference materials.

  43. He GN, Bao NR, Wang S, Xi M, Zhang TH, Chen FS (2021) Ketamine induces ferroptosis of liver cancer cells by targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des Devel Ther 15:3965–3978. https://doi.org/10.2147/DDDT.S332847

    Article  Google Scholar 

  44. Wu X, Dai S, Chen Y, He F, Xie H, Chen C (2019) Reinforcement of dental resin composite via zirconium hydroxide coating and phosphate ester monomer conditioning of nano-zirconia fillers. J Mech Behav Biomed Mater 94:32–41. https://doi.org/10.1016/j.jmbbm.2019.03.002

    Article  CAS  Google Scholar 

  45. Liu Q, Wu B, Yu Q, Wang Y (2019) Immobilization of quaternary ammonium based antibacterial monomer onto dentin substrate by non-thermal atmospheric plasma. Dent Mater J 38:821–829. https://doi.org/10.4012/dmj.2018-267

    Article  CAS  Google Scholar 

  46. Feitosa VP, Ogliari FA, Van Meerbeek B, Watson TF, Yoshihara K, Ogliari AO, Sinhoreti MA, Correr AB, Cama G, Sauro S (2014) Can the hydrophilicity of functional monomers affect chemical interaction. J Dent Res 93:201–206. https://doi.org/10.1177/0022034513514587

    Article  CAS  Google Scholar 

  47. Beazoglou T, Eklund S, Heffley D, Meiers J, Brown LJ, Bailit H (2007) Economic impact of regulating the use of amalgam restorations. Public Health Rep 122:657–663. https://doi.org/10.1177/003335490712200513

    Article  Google Scholar 

  48. Li F, Weir MD, Xu HH (2013) Effects of quaternary ammonium chain length on antibacterial bonding agents. J Dent Res 92:932–938. https://doi.org/10.1177/0022034513502053

    Article  CAS  Google Scholar 

  49. Maia AC, Mangabeira A, Vieira R, Neves AA, Lopes RT, Pires TM, Viana GM, Cabral LM, Cavalcante LM, Portela MB (2019) Experimental composites containing quaternary ammonium methacrylates reduce demineralization at enamel-restoration margins after cariogenic challenge. Dent Mater 35:e175–e183. https://doi.org/10.1016/j.dental.2019.05.021

    Article  CAS  Google Scholar 

  50. Baras BH, Wang S, Melo MAS, Tay F, Fouad AF, Arola DD, Weir MD, Xu HHK (2019) Novel bioactive root canal sealer with antibiofilm and remineralization properties. J Dent 83:67–76. https://doi.org/10.1016/j.jdent.2019.02.006

    Article  CAS  Google Scholar 

  51. Zhang N, Ma J, Melo MA, Weir MD, Bai Y, Xu HH (2015) Protein-repellent and antibacterial dental composite to inhibit biofilms and caries. J Dent 43:225–234. https://doi.org/10.1016/j.jdent.2014.11.008

    Article  CAS  Google Scholar 

  52. Ibrahim MS, Ibrahim AS, Balhaddad AA, Weir MD, Lin NJ, Tay FR, Oates TW, Xu HHK, Melo MAS (2019) A novel dental sealant containing dimethylaminohexadecyl methacrylate suppresses the cariogenic pathogenicity of Streptococcus mutans Biofilms. Int J Mol Sci 20:3491. https://doi.org/10.3390/ijms20143491

    Article  CAS  Google Scholar 

  53. Vidal ML, Rego GF, Viana GM, Cabral LM, Souza JPB, Silikas N, Schneider LF, Cavalcante LM (2018) Physical and chemical properties of model composites containing quaternary ammonium methacrylates. Dent Mater 34:143–151. https://doi.org/10.1016/j.dental.2017.09.020

    Article  CAS  Google Scholar 

  54. Santerre JP, Shajii L, Leung BW (2001) Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric-resin-derived products. Crit Rev Oral Biol Med 12:136–151. https://doi.org/10.1177/10454411010120020401

    Article  CAS  Google Scholar 

  55. Kalagi S, Feitosa SA, Münchow EA, Martins VM, Karczewski AE, Cook NB, Diefenderfer K, Eckert GJ, Geraldeli S, Bottino MC (2020) Chlorhexidine-modified nanotubes and their effects on the polymerization and bonding performance of a dental adhesive. Dent Mater 36:687–697. https://doi.org/10.1016/j.dental.2020.03.007

    Article  CAS  Google Scholar 

  56. Stape THS, Uctasli M, Cibelik HS, Tjäderhane L, Tezvergil-Mutluay A (2021) Dry bonding to dentin: broadening the moisture spectrum and increasing wettability of etch-and-rinse adhesives. Dent Mater 37:1676–1687. https://doi.org/10.1016/j.dental.2021.08.021

    Article  CAS  Google Scholar 

  57. Sai K, Shimamura Y, Takamizawa T, Tsujimoto A, Imai A, Endo H, Barkmeier WW, Latta MA, Miyazaki M (2016) Influence of degradation conditions on dentin bonding durability of three universal adhesives. J Dent 54:56–61. https://doi.org/10.1016/j.jdent.2016.09.004

    Article  CAS  Google Scholar 

  58. Moszner N, Salz U, Zimmermann J (2005) Chemical aspects of self-etching enamel-dentin adhesives: a systematic review. Dent Mater 21:895–910. https://doi.org/10.1016/j.dental.2005.05.001

    Article  CAS  Google Scholar 

  59. Suzuki S, Takamiazawa T, Imai A, Tsujimoto A, Sai K, Takimoto M, Barkmeier WW, Latta MA, Miyazaki M (2018) Bond durability of universal adhesive to bovine enamel using self-etch mode. Clin Oral Investig 22:1113–1122. https://doi.org/10.1007/s00784-017-2196-x

    Article  Google Scholar 

  60. Kawazu M, Takamizawa T, Hirokane E, Tsujimoto A, Tamura T, Barkmeier WW, Latta MA, Miyazaki M (2020) Comparison of dentin bond durability of a universal adhesive and two etch-and-rinse adhesive systems. Clin Oral Investig 24:2889–2897. https://doi.org/10.1007/s00784-019-03153-y

    Article  Google Scholar 

  61. Pashley DH, Tay FR, Breschi L, Tjäderhane L, Carvalho RM, Carrilho M, Tezvergil-Mutluay A (2011) State of the art etch-and-rinse adhesives. Dent Mater 27:1–16. https://doi.org/10.1016/j.dental.2010.10.016

    Article  CAS  Google Scholar 

  62. Zhang K, Cheng L, Wu EJ, Weir MD, Bai Y, Xu HH (2013) Effect of water-ageing on dentin bond strength and anti-biofilm activity of bonding agent containing antibacterial monomer dimethylaminododecyl methacrylate. J Dent 41:504–513. https://doi.org/10.1016/j.jdent.2013.03.011

    Article  CAS  Google Scholar 

  63. Hiraishi N, Breschi L, Prati C, Ferrari M, Tagami J, King NM (2007) Technique sensitivity associated with air-drying of HEMA-free, single-bottle, one-step self-etch adhesives. Dent Mater 23:498–505. https://doi.org/10.1016/j.dental.2006.03.007

    Article  CAS  Google Scholar 

  64. Shokati B, Tam LE, Santerre JP, Finer Y (2010) Effect of salivary esterase on the integrity and fracture toughness of the dentin-resin interface. J Biomed Mater Res B Appl Biomater 94:230–237. https://doi.org/10.1002/jbm.b.31645

    Article  CAS  Google Scholar 

  65. Cavalheiro A, Cruz J, Sousa B, Silva A, Coito C, Lopes M, Vargas M (2021) Dentin adhesives application deviations: effects on permeability and nanoleakage. Dent Mater J 40:1160–1168. https://doi.org/10.4012/dmj.2020-404

    Article  CAS  Google Scholar 

  66. Li F, Majd H, Weir MD, Arola DD, Xu HH (2015) Inhibition of matrix metalloproteinase activity in human dentin via novel antibacterial monomer. Dent Mater 31:284–292. https://doi.org/10.1016/j.dental.2014.12.011

    Article  CAS  Google Scholar 

  67. Yoshihara K, Yoshida Y, Nagaoka N, Fukegawa D, Hayakawa S, Mine A, Nakamura M, Minagi S, Osaka A, Suzuki K (2010) Nano-controlled molecular interaction at adhesive interfaces for hard tissue reconstruction. Acta Biomater 6:3573–3582. https://doi.org/10.1016/j.actbio.2010.03.024

    Article  CAS  Google Scholar 

  68. Matsui N, Takagaki T, Sadr A, Ikeda M, Ichinose S, Nikaido T, Tagami J (2015) The role of MDP in a bonding resin of a two-step self-etching adhesive system. Dent Mater J 34:227–233. https://doi.org/10.4012/dmj.2014-205

    Article  CAS  Google Scholar 

  69. Rego GF, Vidal ML, Viana GM, Cabral LM, Schneider LFJ, Portela MB, Cavalcante LM (2017) Antibiofilm properties of model composites containing quaternary ammonium methacrylates after surface texture modification. Dent Mater 33:1149–1156. https://doi.org/10.1016/j.dental.2017.07.010

    Article  CAS  Google Scholar 

  70. Krzyściak W, Jurczak A, Kościelniak D, Bystrowska B, Skalniak A (2014) The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis 33:499–515. https://doi.org/10.1007/s10096-013-1993-7

    Article  Google Scholar 

  71. Pereira D, Seneviratne CJ, Koga-Ito CY, Samaranayake LP (2018) Is the oral fungal pathogen Candida albicans a cariogen? Oral Dis 24:518–526. https://doi.org/10.1111/odi.12691

    Article  Google Scholar 

  72. Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J (2011) Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol 19:241–247. https://doi.org/10.1016/j.tim.2011.02.003

    Article  CAS  Google Scholar 

  73. Campos KPL, Viana GM, Cabral LM, Portela MB, Hirata Junior R, Cavalcante LM, Lourenço EJV, Telles DM (2020) Self-cured resin modified by quaternary ammonium methacrylates and chlorhexidine: cytotoxicity, antimicrobial, physical, and mechanical properties. Dent Mater 36:68–75. https://doi.org/10.1016/j.dental.2019.10.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81970945 and No. 81371156).

Funding

This work was supported by the National Natural Science Foundation of China (No. 81970945 and No. 81371156).

Author information

Authors and Affiliations

Authors

Contributions

JS helped in methodology, writing—original draft, visualization. MM contributed to software and data curation. YH was involved in validation and investigation. HM helped in software and formal analysis. XW performed writing—review & editing and supervision.

Corresponding author

Correspondence to Xin Wei.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This study involving extracted non-carious human third molars has been approved by the Ethical Committee Department, Affiliated Hospital of Stomatology, Nanjing Medical University, China.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Ma, M., Huang, Y. et al. Evaluation of the effects of combined application of dimethylaminohexadecyl methacrylate and MDP on dentin bonding and antimicrobial properties. J Mater Sci 58, 12685–12705 (2023). https://doi.org/10.1007/s10853-023-08820-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08820-w

Navigation