Skip to main content
Log in

Construction of sustainable, fireproof and superhydrophobic wood template for efficient oil/water separation

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Three-dimensional wood structure derived from nature has emerged as a promising template for oil/water separation due to their high tubular porosity, inexpensive, exceptional absorption capacity, and sustainability. However, wood is naturally inflammable and thus expected to increase the risk of fire and explosion when being used as an absorbent for many oils and organic compounds. Herein, a robust strategy for fabricating bio-based fireproof and superhydrophobic wood template as an oil/water separation membrane via a layer-by-layer assembly technique is proposed. The resulting wood template exhibits highly flame retardant and excellent oil/water separation properties (> 97%), self-cleaning capability, and mechanical durability. The limiting oxygen index (LOI) of the wood-layer-15 sample increased to 60.5% and showed very strong self-extinguishing behavior in the UL-94 test. The surface of the treated wood template possessed superhydrophobicity with the water contact angle of 168° and showed stable super-repellency toward corrosive liquids, including acidic, basic and other commonly fluids. More importantly, the video capture system indicated that falling water droplet was able to bounce off the surface several times. This work takes full advantage of raw materials from nature, which has a great potential for cleaning up the oil spills and chemical leakage in the actual large-scale production.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Li YQ, Zhang H, Ma C, Yin H, Gong LZ, Duh YS, Feng R (2019) Durable, cost-effective and superhydrophilic chitosan-alginate hydrogel-coated mesh for efficient oil/water separation. Carbohydr Polym 226:115279. https://doi.org/10.1016/j.carbpol.2019.115279

    Article  CAS  Google Scholar 

  2. Fu QL, Ansari F, Zhou Q, Berglund LA (2018) Wood nanotechnology for strong, mesoporous, and hydrophobic biocomposites for selective separation of oil/water mixtures. ACS Nano 12(3):2222–2230. https://doi.org/10.1021/acsnano.8b00005

    Article  CAS  Google Scholar 

  3. Yu SZ, Tan HY, Wang J, Liu X, Zhou KB (2015) High porosity supermacroporous polystyrene materials with excellent oil-water separation and gas permeability Properties. ACS Appl Mater Interfaces 7(12):6745–6753. https://doi.org/10.1021/acsami.5b00196

    Article  CAS  Google Scholar 

  4. Li LJ, Rong LD, Xu ZT, Wang BJ, Feng XL, Mao ZP, Xu H, Yuan JY, Liu SQ, Sui XF (2020) Cellulosic sponges with pH responsive wettability for efficient oil-water separation. Carbohydr Polym 237:116133. https://doi.org/10.1016/j.carbpol.2020.116133

    Article  CAS  Google Scholar 

  5. Zhang R, Wu YP, Zhang HY, Xue SS, Guo ML, Zhang T (2019) A facile strategy toward hydrophobic-oleophilic 3D Fe foam for efficient oil-water separation. J Mater Sci 54(20):13358–13367. https://doi.org/10.1007/s10853-019-03819-8

    Article  CAS  Google Scholar 

  6. Yao CJ, Luo MY, Wang HL, Xu B, Cai ZS (2019) Asymmetric wetting Janus fabrics with double-woven structure for oil/water separation. J Mater Sci 54(7):5942–5951. https://doi.org/10.1007/s10853-018-03241-6

    Article  CAS  Google Scholar 

  7. Zhu WX, Huang W, Zhou WH, Qiu Z, Wang Z, Li HJ, Wang YG, Li J, Xie YJ (2020) Sustainable and antibacterial sandwich-like Ag-Pulp/CNF composite paper for oil/water separation. Carbohydr Polym 245:116587. https://doi.org/10.1016/j.carbpol.2020.116587

    Article  CAS  Google Scholar 

  8. Zhang JP, Seeger S (2011) Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv Funct Mater 21(24):4699–4704. https://doi.org/10.1002/adfm.201101090

    Article  CAS  Google Scholar 

  9. Li J, Xu CC, Zhang Y, Tang XH, Qi W, Wang Q (2018) Gravity-directed separation of both immiscible and emulsified oil/water mixtures utilizing coconut shell layer. J Colloid Interf Sci 511:233–242. https://doi.org/10.1016/j.jcis.2017.09.111

    Article  CAS  Google Scholar 

  10. Rather AM, Jana N, Hazarika P, Manna U (2017) Sustainable polymeric material for the facile and repetitive removal of oil-spills through the complementary use of both selective-absorption and active-filtration processes. J Mater Chem A 5(44):23339–23348. https://doi.org/10.1039/C7TA07982F

    Article  CAS  Google Scholar 

  11. Yang HT, Yu B, Song PG, Maluk C, Wang H (2019) Surface-coating engineering for flame retardant flexible polyurethane foams: A critical review. Compos Part B: Eng 176:107185. https://doi.org/10.1016/j.compositesb.2019.107185

    Article  CAS  Google Scholar 

  12. He MJ, Zhang Y, Wang JX, Ma LL, Zhao Y, Zhou YC, Yang ZW, Qu MN (2020) Eco-friendly, magnetic-driven, superhydrophobic sponge for oil/water separation and emulsion purification. J Mater Sci 55(15):6708–6720. https://doi.org/10.1007/s10853-020-04462-4

    Article  CAS  Google Scholar 

  13. Gore PM, Kandasubramanian B (2018) Heterogeneous wettable cotton based superhydrophobic Janus biofabric engineered with PLA/functionalized-organoclay microfibers for efficient oil-water separation. J Mater Chem A 6(17):7457–7479. https://doi.org/10.1039/C7TA11260B

    Article  CAS  Google Scholar 

  14. Guan H, Cheng ZY, Wang XQ (2018) Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents. ACS Nano 12(10):10365–10373. https://doi.org/10.1021/acsnano.8b05763

    Article  CAS  Google Scholar 

  15. Li YF, Chen CJ, Song JW, Yang CP, Kuang YD, Vellore A, Hitz E, Zhu MW, Jiang F, Yao YG, Gong A, Martini A, Hu LB (2020) Strong and superhydrophobic wood with aligned cellulose nanofibers as a waterproof structural material. Chinese J Chem 38:823–829. https://doi.org/10.1002/cjoc.202000032

    Article  CAS  Google Scholar 

  16. Chen CJ, Kuang YD, Zhu SZ, Burget I, Keplinger T, Gong A, Li T, Burget L, Eichhorn JS, Hu LB (2020) Structure-property-function relationships of natural and engineered wood. Nat Rev Mater 5:642–666. https://doi.org/10.1038/s41578-020-0195-z

    Article  CAS  Google Scholar 

  17. Zhu MW, Song JW, Li T, Gong A, Wang YB, Dai JQ, Yao YG, Luo W, Henderson D, Hu LB (2016) Highly anisotropic, highly transparent wood composites. Adv Mater (Weinheim, Ger) 28(35):7563. https://doi.org/10.1002/adma.201604084

    Article  CAS  Google Scholar 

  18. Del blanco MV, Fischer EJ, Cabane E (2017) Underwater superoleophobic wood cross sections for efficient oil/water separation. Adv Mater Interfaces. 4(21):1700584. https://doi.org/10.1002/admi.201700584

    Article  CAS  Google Scholar 

  19. Yong JL, Chen F, Huo JL, Fang Y, Yang Q, Bian H, Li WT, Wei Y, Dai YZ, Hou X (2018) Green, biodegradable, underwater superoleophobic wood sheet for efficient oil/water separation. ACS Omega 3(2):1395–1402. https://doi.org/10.1021/acsomega.7b02064

    Article  CAS  Google Scholar 

  20. Ruan CP, Ai KL, Li XB, Lu LH (2014) A superhydrophobic sponge with excellent absorbency and flame retardancy. Angew Chem, Int Ed 53(22):5556–5560. https://doi.org/10.1002/anie.201400775

    Article  CAS  Google Scholar 

  21. Bellanger H, Casdorff K, Muff LF, Ammann R, Burgert I, Michen B (2017) Layer-by-layer deposition on a heterogeneous surface: Effect of sorption kinetics on the growth of polyelectrolyte multilayers. J Colloid Interface Sci 500:133–141. https://doi.org/10.1016/j.jcis.2017.02.048

    Article  CAS  Google Scholar 

  22. Lu X, Hu YC (2016) Layer-by-layer deposition of TiO2 nanoparticles in the wood surface and its superhydrophobic performance. BioResources 11(2):4605–4620. https://doi.org/10.15376/biores.11.2.4605-4620

    Article  CAS  Google Scholar 

  23. Liu R, Dai JH, Ma LL, Chen JJ, Shi XW, Du YM, Li Z, Deng HB (2019) Low-temperature plasma treatment-assisted layer-by-layer self-assembly for the modification of nanofibrous mats. J Colloid Interface Sci 540:535–543. https://doi.org/10.1016/j.jcis.2019.01.054

    Article  CAS  Google Scholar 

  24. Huang YF, Sun JJ, Wu DH, Feng XS (2018) Layer-by-layer self-assembled chitosan/PAA nanofiltration membranes. Sep Purif Technol 207:142–150. https://doi.org/10.1016/j.seppur.2018.06.032

    Article  CAS  Google Scholar 

  25. Rao X, Liu YZ, Fu YC, Liu YX, Yu HP (2016) Formation and properties of polyelectrolytes/TiO2 composite coating on wood surfaces through layer-by-layer assembly method. Holzforschung 70(4):361–367. https://doi.org/10.1515/hf-2015-0047

    Article  CAS  Google Scholar 

  26. Renneckar S, Zhou Y (2009) Nanoscale coatings on wood: polyelectrolyte adsorption and layer-by-Layer assembled film formation. ACS Appl Mater Interfaces 1(3):559–566. https://doi.org/10.1021/am800119

    Article  CAS  Google Scholar 

  27. Carosio F, Di Blasio A, Alongi J, Malucelli G (2013) Green DNA-based flame retardant coatings assembled through layer by layer. Polymer 54(19):5148–5153. https://doi.org/10.1016/j.polymer.2013.07.029

    Article  CAS  Google Scholar 

  28. Liu XH, Zhang QY, Peng B, Ren YL, Cheng BW, Ding C, Su XW, He J, Lin SG (2020) Flame retardant cellulosic fabrics via layer-by-layer self-assembly double coating with egg white protein and phytic acid. J Clean Prod 243:118641. https://doi.org/10.1016/j.jclepro.2019.118641

    Article  CAS  Google Scholar 

  29. Zhang LQ, Zhang M, Hu LH, Zhou YH (2014) Synthesis of rigid polyurethane foams with castor oil-based flame retardant polyols. Ind Crops Prod 52:380–388. https://doi.org/10.1016/j.indcrop.2013.10.043

    Article  CAS  Google Scholar 

  30. Gu JW, Zhang GC, Dong SL, Zhang QY, Kong J (2007) Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings. Surf Coat Technol 201(18):7835–7841. https://doi.org/10.1016/j.surfcoat.2007.03.020

    Article  CAS  Google Scholar 

  31. Baidya A, Ganayee MA, Ravindran SJ, Tam KC, Das SK, Ras RHA, Pradeep T (2017) Organic solvent-free fabrication of durable and multifunctional superhydrophobic paper from waterborne fluorinated cellulose nanofiber building blocks. ACS Nano 11(11):11091–11099. https://doi.org/10.1021/acsnano.7b05170

    Article  CAS  Google Scholar 

  32. Zhou XY, Zhang ZZ, Xu XH, Guo F, Zhu XT, Men XH, Ge B (2013) Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS Appl Mater Interfaces 5(15):7208–7214. https://doi.org/10.1021/am4015346

    Article  CAS  Google Scholar 

  33. Pan QM, Wang M, Wang HB (2008) Separating small amount of water and hydrophobic solvents by novel superhydrophobic copper meshes. Appl Surf Sci 254(18):6002–6006. https://doi.org/10.1016/j.apsusc.2008.03.034

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (32071694 and 31670560), the National Key R & D Program of China (2018YFE0107100, 2019YFD1101203), and Guangzhou Science and Technology Project(201905010005) and the Project of Key Disciplines of Forestry Engineering of Bureau of Guangzhou Municipality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuigen Guo.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM1 (MP4 29,192 kb)

ESM2 (MP4 8120 kb)

ESM3 (AVI 8126 kb)

ESM4 (MP4 25,665 kb)

ESM5 (MP4 5556 kb)

ESM6 (MP4 439 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, T., Li, L., Mei, C. et al. Construction of sustainable, fireproof and superhydrophobic wood template for efficient oil/water separation. J Mater Sci 56, 5624–5636 (2021). https://doi.org/10.1007/s10853-020-05615-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05615-1

Navigation