Skip to main content
Log in

Biodegradable, superhydrophobic walnut wood membrane for the separation of oil/water mixtures

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The preparation of environmentally friendly oil/water separation materials remains a great challenge. Freeze-drying of wood after lignin removal yields wood aerogels, which can be used as substrates to prepare fluorine-free environmentally friendly superhydrophobic materials, However, they are more suitable for absorption rather than filtration applications due to their poor strength. A study using cross-sections of pristine wood chips as substrates retains the original strength of wood, but the use of the cross-sectional of wood pieces limits their thickness, strength, and size. In this paper, a degradable fluorine-free superhydrophobic film (max. water contact angle of approximately 164.2°) with self-cleaning and abrasion resistance characteristics was prepared by a one-step method using pristine and activated walnut longitudinal section films as the substrate, with tetraethyl orthosilicate as a precursor and dodecyltriethoxysilane as a modifier. The tensile strength results show that superhydrophobic films with pristine or activated wood substrates maintained the strength of pristine wood and were 2.2 times stronger than the wood aerogel substrate. In addition, after cross-laminating the two samples, the films had the ability to separate oil and water by continuous filtration with high efficiency (98.5%) and flux (approximately 1.3 × 103 L·m·h−1). The method has potential for the large-scale fabrication of degradable superhydrophobic filtration separation membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wen L, Tian Y, Jiang L. Bioinspired super-wettability from fundamental research to practical applications. Angewandte Chemie International Edition, 2015, 54(11): 3387–3399

    Article  CAS  PubMed  Google Scholar 

  2. Wang S, Liu K, Yao X, Jiang L. Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chemical Reviews, 2015, 115(16): 8230–8293

    Article  CAS  PubMed  Google Scholar 

  3. Liu M, Wang S, Jiang L. Nature-inspired superwettability systems. Nature Reviews Materials, 2017, 2(7): 1–17

    Article  CAS  Google Scholar 

  4. Yin X, Wang Z, Shen Y, Mu P, Zhu G, Li J. Facile fabrication of superhydrophobic copper hydroxide coated mesh for effective separation of water-in-oil emulsions. Separation and Purification Technology, 2020, 230: 115856

    Article  CAS  Google Scholar 

  5. Xu W, Song J, Sun J, Lu Y, Yu Z. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces. ACS Applied Materials & Interfaces, 2011, 3(11): 4404–4414

    Article  CAS  Google Scholar 

  6. Varanasi K K, Deng T, Smith J D, Hsu M, Bhate N. Frost formation and ice adhesion on superhydrophobic surfaces. Applied Physics Letters, 2010, 97(23): 234102

    Article  Google Scholar 

  7. Zhang C, Liang F, Zhang W, Liu H, Ge M, Zhang Y, Dai J, Wang H, Xing G, Lai Y, Tang Y. Constructing mechanochemical durable and self-healing superhydrophobic surfaces. ACS Omega, 2020, 5(2): 986–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang J, Seeger S. Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Advanced Functional Materials, 2011, 21(24): 4699–4704

    Article  CAS  Google Scholar 

  9. Ge M, Cao C, Huang J, Zhang X, Tang Y, Zhou X, Zhang K, Chen Z, Lai Y. Rational design of materials interface at nanoscale towards intelligent oil-water separation. Nanoscale Horizons, 2018, 3(3): 235–260

    Article  CAS  PubMed  Google Scholar 

  10. Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angewandte Chemie, 2004, 116(15): 2046–2048

    Article  Google Scholar 

  11. Li L, Xu Z, Sun W, Chen J, Dai C, Yan B, Zeng H. Bio-inspired membrane with adaptable wettability for smart oil/water separation. Journal of Membrane Science, 2020, 598: 117661

    Article  CAS  Google Scholar 

  12. Lu K J, Zhao D, Chen Y, Chang J, Chung T S. Rheologically controlled design of nature-inspired superhydrophobic and self-cleaning membranes for clean water production. npj Clean Water, 2020, 3(1): 1–10

    Article  Google Scholar 

  13. Zhang W, Shi Z, Zhang F, Liu X, Jin J, Jiang L. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Advanced Materials, 2013, 25(14): 2071–2076

    Article  CAS  PubMed  Google Scholar 

  14. Wang D, Sun Q, Hokkanen M J, Zhang C, Lin F Y, Liu Q, Zhu S P, Zhou T, Chang Q, He B, Zhou Q, Chen L, Wang Z, Ras R H A, Deng X. Design of robust superhydrophobic surfaces. Nature, 2020, 582(7810): 55–59

    Article  CAS  PubMed  Google Scholar 

  15. Peng Y, Zhu W, Shen S, Feng L, Deng Y. Strain-induced surface micro/nanosphere structure: a new technique to design mechanically robust superhydrophobic surfaces with rose petallike morphology. Advanced Materials Interfaces, 2017, 4(20): 1700497

    Article  Google Scholar 

  16. Tian X, Verho T, Ras R H A. Moving superhydrophobic surfaces toward real-world applications. Science, 2016, 352(6282): 142–143

    Article  CAS  PubMed  Google Scholar 

  17. Hussain S M, Braydich-Stolle L K, Schrand A M, Murdock R C, Yu K O, Mattie D M, Schlager J J, Terrones M. Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Advanced Materials, 2009, 21(16): 1549–1559

    Article  CAS  Google Scholar 

  18. Berglund L A, Burgert I. Bioinspired wood nanotechnology for functional materials. Advanced Materials, 2018, 30(19): 1704285

    Article  Google Scholar 

  19. Jiang F, Li T, Li Y, Zhang Y, Gong A, Dai J, Hitz E, Luo W, Hu L. Wood-based nanotechnologies toward sustainability. Advanced Materials, 2018, 30(1): 1703453

    Article  Google Scholar 

  20. Chen F, Gong A S, Zhu M, Chen G, Lacey S D, Jiang F, Li Y, Wang Y, Dai J, Yao Y, Song J, Liu B, Fu K, Das S, Hu L. Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment. ACS Nano, 2017, 11(4): 4275–4282

    Article  CAS  PubMed  Google Scholar 

  21. Vidiella del Blanco M, Fischer E J, Cabane E. Underwater superoleophobic wood cross sections for efficient oil/water separation. Advanced Materials Interfaces, 2017, 4(21): 1700584

    Article  Google Scholar 

  22. Wang K, Liu X, Tan Y, Zhang W, Zhang S, Li J. Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation. Chemical Engineering Journal, 2019, 371: 769–780

    Article  CAS  Google Scholar 

  23. Fu Q, Ansari F, Zhou Q, Berglund L A. Wood nanotechnology for strong, mesoporous, and hydrophobic biocomposites for selective separation of oil/water mixtures. ACS Nano, 2018, 12(3): 2222–2230

    Article  CAS  PubMed  Google Scholar 

  24. Mulyadi A, Zhang Z, Deng Y. Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Applied Materials & Interfaces, 2016, 8(4): 2732–2740

    Article  CAS  Google Scholar 

  25. Bai X, Shen Y, Tian H, Yang Y, Feng H, Li J. Facile fabrication of superhydrophobic wood slice for effective water-in-oil emulsion separation. Separation and Purification Technology, 2019, 210: 402–408

    Article  CAS  Google Scholar 

  26. Wang X, Liu S, Chang H, Liu J. Sol-gel deposition of TiO2 nanocoatings on wood surfaces with enhanced hydrophobicity and photostability. Wood and Fiber Science, 2014, 46(1): 109–117

    CAS  Google Scholar 

  27. Liu M, Qing Y, Wu Y, Liang J, Luo S. Facile fabrication of superhydrophobic surfaces on wood substrates via a one-step hydrothermal process. Applied Surface Science, 2015, 330: 332–338

    Article  CAS  Google Scholar 

  28. Chang H, Tu K, Wang X, Liu J. Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles. RSC Advances, 2015, 5(39): 30647–30653

    Article  CAS  Google Scholar 

  29. Wu Y, Jia S, Qing Y, Luo S, Liu M. A versatile and efficient method to fabricate durable superhydrophobic surfaces on wood, lignocellulosic fiber, glass, and metal substrates. Journal of Materials Chemistry A, 2016, 4(37): 14111–14121

    Article  CAS  Google Scholar 

  30. Hsieh C T, Chang B S, Lin J Y. Improvement of water and oil repellency on wood substrates by using fluorinated silica nanocoating. Applied Surface Science, 2011, 257(18): 7997–8002

    Article  CAS  Google Scholar 

  31. Xie L, Tang Z, Jiang L, Breedveld V, Hess D W. Creation of superhydrophobic wood surfaces by plasma etching and thin-film deposition. Surface and Coatings Technology, 2015, 281: 125–132

    Article  CAS  Google Scholar 

  32. Unger B, Bücker M, Reinsch S, Hübert T. Chemical aspects of wood modification by sol-gel-derived silica. Wood Science and Technology, 2013, 47(1): 83–104

    Article  CAS  Google Scholar 

  33. Wang X, Chai Y, Liu J. Formation of highly hydrophobic wood surfaces using silica nanoparticles modified with long-chain alkylsilane. Holzforschung, 2013, 67(6): 667–672

    Article  CAS  Google Scholar 

  34. Ma P, Chen B, Di M. Activation processes of wood fiber under freezing by NaOH/urea aqueous solution. Biomass Chemical Engineering, 2018, 52: 16–22

    Google Scholar 

  35. Yong J, Chen F, Huo J, Fang Y, Yang Q, Bian H, Li W, Wei Y, Dai Y, Hou X. Green, Biodegradable, underwater superoleophobic wood sheet for efficient oil/water separation. ACS Omega, 2018, 3(2): 1395–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen Y, Lin X, Liu N, Cao Y, Lu F, Xu L, Feng L. Magnetically recoverable efficient demulsifier for water-in-oil emulsions. ChemPhysChem, 2015, 16(3): 595–600

    Article  CAS  PubMed  Google Scholar 

  37. Mi R, Li T, Dalgo D, Chen C, Kuang Y, He S, Zhao X, Xie W, Gan W, Zhu J, Srebric J, Yang R, Hu L. A clear, strong, and thermally insulated transparent wood for energy efficient windows. Advanced Functional Materials, 2020, 30(1): 1907511

    Article  CAS  Google Scholar 

  38. Tu K, Wang X, Kong L, Chang H, Liu J. Fabrication of robust, damage-tolerant superhydrophobic coatings on naturally micro-grooved wood surfaces. RSC Advances, 2016, 6(1): 701–707

    Article  CAS  Google Scholar 

  39. Liu F, Wang S, Zhang M, Ma M, Wang C, Li J. Improvement of mechanical robustness of the superhydrophobic wood surface by coating PVA/SiO2 composite polymer. Applied Surface Science, 2013, 280: 686–692

    Article  CAS  Google Scholar 

  40. Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D. Super-hydrophobic surfaces: from natural to artificial. Advanced Materials, 2002, 14(24): 1857–1860

    Article  CAS  Google Scholar 

  41. Faix O, Böttcher J H. The influence of particle size and concentration in transmission and diffuse reflectance spectroscopy of wood. European Journal of Wood & Wood Products, 1992, 50(6): 221–226

    Article  CAS  Google Scholar 

  42. Popescu C M, Popescu M C, Vasile C. Structural analysis of photodegraded lime wood by means of FT-IR and 2D IR correlation spectroscopy. International Journal of Biological Macromolecules, 2011, 48(4): 667–675

    Article  CAS  PubMed  Google Scholar 

  43. Labbé N, Rials T G, Kelley S S, Cheng Z M, Kim J Y, Li Y. FT-IR imaging and pyrolysis-molecular beam mass spectrometry: new tools to investigate wood tissues. Wood Science and Technology, 2005, 39(1): 61–76

    Article  Google Scholar 

  44. Gao S, Dong X, Huang J, Li S, Li Y, Chen Z, Lai Y. Rational construction of highly transparent superhydrophobic coatings based on a non-particle, fluorine-free and water-rich system for versatile oil–water separation. Chemical Engineering Journal, 2018, 333: 621–629

    Article  CAS  Google Scholar 

  45. Hong J K, Kim H R, Park H H. The effect of sol viscosity on the sol-gel derived low density SiO2 xerogel film for intermetal dielectric application. Thin Solid Films, 1998, 332(1): 449–454

    Article  CAS  Google Scholar 

  46. Liu C, Wang S, Shi J, Wang C. Fabrication of superhydrophobic wood surfaces via a solution-immersion process. Applied Surface Science, 2011, 258(2): 761–765

    Article  CAS  Google Scholar 

  47. Arkles B, Larson G L. Silicon Compounds: Silanes & Silicones. 3rd edition. Morrisville, PA: Gelest, Inc., 2013

    Google Scholar 

  48. Zhu T, Cheng Y, Huang J, Xiong J, Ge M, Mao J, Liu Z, Dong X, Chen Z, Lai Y. A transparent superhydrophobic coating with mechanochemical robustness for anti-icing, photocatalysis and self-cleaning. Chemical Engineering Journal, 2020, 399: 125746

    Article  CAS  Google Scholar 

  49. Li J, Lu Y, Wu Z, Bao Y, Xiao R, Yu H, Chen Y. Durable, self-cleaning and superhydrophobic bamboo timber surfaces based on TiO2 films combined with fluoroalkylsilane. Ceramics International, 2016, 42(8): 9621–9629

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51776070) and the State Grid Science and Technology Program (Grant No. SGGNSW00YWJS2100024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqing Dong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, T., Dong, C., Wang, X. et al. Biodegradable, superhydrophobic walnut wood membrane for the separation of oil/water mixtures. Front. Chem. Sci. Eng. 16, 1377–1386 (2022). https://doi.org/10.1007/s11705-022-2157-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2157-z

Keywords

Navigation