Skip to main content
Log in

Neuroinflammation and the role of epigenetic-based therapies for Huntington’s disease management: the new paradigm

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Huntington’s disease (HD) is an inherited, autosomal, neurodegenerative ailment that affects the striatum of the brain. Despite its debilitating effect on its patients, there is no proven cure for HD management as of yet. Neuroinflammation, excitotoxicity, and environmental factors have been reported to influence the regulation of gene expression by modifying epigenetic mechanisms. Aside focusing on the etiology, changes in epigenetic mechanisms have become a crucial factor influencing the interaction between HTT protein and epigenetically transcribed genes involved in neuroinflammation and HD. This review presents relevant literature on epigenetics with special emphasis on neuroinflammation and HD. It summarizes pertinent research on the role of neuroinflammation and post-translational modifications of chromatin, including DNA methylation, histone modification, and miRNAs. To achieve this about 1500 articles were reviewed via databases like PubMed, ScienceDirect, Google Scholar, and Web of Science. They were reduced to 534 using MeSH words like ‘epigenetics, neuroinflammation, and HD’ coupled with Boolean operators. Results indicated that major contributing factors to the development of HD such as mitochondrial dysfunction, excitotoxicity, neuroinflammation, and apoptosis are affected by epigenetic alterations. However, the association between neuroinflammation-altered epigenetics and the reported transcriptional changes in HD is unknown. Also, the link between epigenetically dysregulated genomic regions and specific DNA sequences suggests the likelihood that transcription factors, chromatin-remodeling proteins, and enzymes that affect gene expression are all disrupted simultaneously. Hence, therapies that target pathogenic pathways in HD, including neuroinflammation, transcriptional dysregulation, triplet instability, vesicle trafficking dysfunction, and protein degradation, need to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

HD:

Huntington’s disease

HTT:

Huntingtin gene

mHtt:

Mutant huntingtin protein

PPAR-GC1α:

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

PTM:

Post-translational modifications

DNMTs:

DNA methyltransferase enzymes

TET:

Ten-eleven translocation

7-mG:

7-Methyl guanine

HPLC–UV:

High-performance liquid chromatography–ultraviolet spectroscopy

LC–MS/MS:

Liquid chromatography coupled with tandem mass spectrometry

RFLP:

Restriction fragment length polymorphism

AFLP:

Amplification fragment length polymorphism

HAT:

Histone acetyltransferase

HDAC:

Histone deacetylase

HMT:

Histone methyltransferase

ESET/SETDB1:

ERG-associated protein with SET domain

REST:

Repressor element 1 (RE1) silencing transcription factor

PRMT5:

Arginine dimethyltransferase 5

CREB:

cAMP response element binding

References

  • Abdanipour A, Schluesener HJ, Tiraihi T (2012) Effects of valproic acid, a histone deacetylase inhibitor, on improvement of locomotor function in rat spinal cord injury based on epigenetic science. Iran Biomed J 16(2):90–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arthur R, Navik U, Kumar P (2022) Repurposing artemisinins as neuroprotective agents: a focus on the PI3k/Akt signalling pathway. Naunyn Schmiedebergs Arch Pharmacol 396(4):593–605

    Article  PubMed  Google Scholar 

  • Athira KV, Sadanandan P, Chakravarty S (2021) Repurposing vorinostat for the treatment of disorders affecting brain. Neuromolecular Med 23(4):449–465

    Article  CAS  PubMed  Google Scholar 

  • Ban JJ et al (2017) MicroRNA-27a reduces mutant huntingtin aggregation in an in vitro model of Huntington’s disease. Biochem Biophys Res Commun 488(2):316–321

    Article  CAS  PubMed  Google Scholar 

  • Bassi S et al (2017) Epigenetics of Huntington’s disease. Adv Exp Med Biol 978:277–299

    Article  CAS  PubMed  Google Scholar 

  • Berson A et al (2018) Epigenetic regulation in neurodegenerative diseases. Trends Neurosci 41(9):587–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biagioli M et al (2015) Htt CAG repeat expansion confers pleiotropic gains of mutant huntingtin function in chromatin regulation. Hum Mol Genet 24(9):2442–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breiling A, Lyko F (2015) Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin 8:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Campos EI, Reinberg D (2009) Histones: annotating chromatin. Annu Rev Genet 43:559–599

    Article  CAS  PubMed  Google Scholar 

  • Caron NS, Dorsey ER, Hayden MR (2018) Therapeutic approaches to Huntington disease: from the bench to the clinic. Nat Rev Drug Discov 17(10):729–750

    Article  CAS  PubMed  Google Scholar 

  • Chang KH, Wu YR, Chen CM (2017) Down-regulation of miR-9* in the peripheral leukocytes of Huntington’s disease patients. Orphanet J Rare Dis 12(1):185

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng PH et al (2013) miR-196a ameliorates phenotypes of Huntington disease in cell, transgenic mouse, and induced pluripotent stem cell models. Am J Hum Genet 93(2):306–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheray M, Joseph B (2018) Epigenetics control microglia plasticity. Front Cell Neurosci 12:243

    Article  PubMed  PubMed Central  Google Scholar 

  • Chouliaras L et al (2010) Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Prog Neurobiol 90(4):498–510

    Article  CAS  PubMed  Google Scholar 

  • Das S, Bhattacharyya NP (2015) Heat shock factor 1-regulated miRNAs can target huntingtin and suppress aggregates of mutant huntingtin. Microrna 4(3):185–193

    Article  CAS  PubMed  Google Scholar 

  • Das E, Jana NR, Bhattacharyya NP (2015) Delayed cell cycle progression in STHdh(Q111)/Hdh(Q111) cells, a cell model for Huntington’s disease mediated by microRNA-19a, microRNA-146a and microRNA-432. Microrna 4(2):86–100

    Article  CAS  PubMed  Google Scholar 

  • De Souza RA et al (2016) DNA methylation profiling in human Huntington’s disease brain. Hum Mol Genet 25(10):2013–2030

    Article  PubMed  Google Scholar 

  • Díez-Planelles C et al (2016) Circulating microRNAs in Huntington’s disease: emerging mediators in metabolic impairment. Pharmacol Res 108:102–110

    Article  PubMed  Google Scholar 

  • Dompierre JP et al (2007) Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci 27(13):3571–3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong X, Cong S (2021) MicroRNAs in Huntington’s disease: diagnostic biomarkers or therapeutic agents? Front Cell Neurosci 15:705348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebbel EN et al (2010) Identification of phenylbutyrate-generated metabolites in Huntington disease patients using parallel liquid chromatography/electrochemical array/mass spectrometry and off-line tandem mass spectrometry. Anal Biochem 399(2):152–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faragó A et al (2022) Acetylation state of lysine 14 of histone H33 affects mutant huntingtin induced pathogenesis. Int J Mol Sci 23(23):15173

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng J et al (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 13(4):423–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrante RJ et al (2004) Chemotherapy for the brain: the antitumor antibiotic mithramycin prolongs survival in a mouse model of Huntington’s disease. J Neurosci 24(46):10335–10342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardian G et al (2005) Neuroprotective effects of phenylbutyrate in the N171–82Q transgenic mouse model of Huntington’s disease. J Biol Chem 280(1):556–563

    Article  CAS  PubMed  Google Scholar 

  • Ghosh P, Saadat A (2021) Neurodegeneration and epigenetics: a review. Neurologia (Engl Ed)

  • Ghosh R, Tabrizi SJ (2018) Clinical features of Huntington’s disease. Adv Exp Med Biol 1049:1–28

    Article  CAS  PubMed  Google Scholar 

  • Glajch KE, Sadri-Vakili G (2015) Epigenetic mechanisms involved in Huntington’s disease pathogenesis. J Huntingtons Dis 4(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Gray SG (2010) Targeting histone deacetylases for the treatment of Huntington’s disease. CNS Neurosci Ther 16(6):348–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guedes-Dias P et al (2015) HDAC6 inhibition induces mitochondrial fusion, autophagic flux and reduces diffuse mutant huntingtin in striatal neurons. Biochim Biophys Acta 1852(11):2484–2493

    Article  CAS  PubMed  Google Scholar 

  • Guo JU et al (2011) Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci 14(10):1345–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Her LS et al (2017) miR-196a enhances neuronal morphology through suppressing RANBP10 to provide neuroprotection in Huntington’s disease. Theranostics 7(9):2452–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath S et al (2016) Huntington’s disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels. Aging (Albany NY) 8(7):1485–1512

    Article  CAS  PubMed  Google Scholar 

  • Hur K et al (2014) Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut 63(4):635–646

    Article  CAS  PubMed  Google Scholar 

  • Hyeon JW, Kim AH, Yano H (2021) Epigenetic regulation in Huntington’s disease. Neurochem Int 148:105074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igarashi S et al (2003) Inducible PC12 cell model of Huntington’s disease shows toxicity and decreased histone acetylation. NeuroReport 14(4):565–568

    Article  CAS  PubMed  Google Scholar 

  • Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39(1):73–82

    Article  CAS  PubMed  Google Scholar 

  • Jia H et al (2015) HDAC inhibition imparts beneficial transgenerational effects in Huntington’s disease mice via altered DNA and histone methylation. Proc Natl Acad Sci U S A 112(1):E56–E64

    Article  CAS  PubMed  Google Scholar 

  • Jia H et al (2016) The effects of pharmacological inhibition of histone deacetylase 3 (HDAC3) in Huntington’s disease mice. PLoS One 11(3):e0152498

    Article  PubMed  PubMed Central  Google Scholar 

  • Jimenez-Sanchez M et al (2017) Huntington’s disease: mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb Perspect Med 7(7):a024240

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson EB et al (2021) Dynamics of cortical degeneration over a decade in Huntington’s disease. Biol Psychiatry 89(8):807–816

    Article  PubMed  PubMed Central  Google Scholar 

  • Jovicic A et al (2013) MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington’s disease-related mechanisms. PLoS One 8(1):e54222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurcau A (2022) Molecular pathophysiological mechanisms in Huntington’s disease. Biomedicines 10(6):1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juźwik CA et al (2019) microRNA dysregulation in neurodegenerative diseases: a systematic review. Prog Neurobiol 182:101664

    Article  PubMed  Google Scholar 

  • Kanherkar RR, Bhatia-Dey N, Csoka AB (2014) Epigenetics across the human lifespan. Front Cell Dev Biol 2:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur G et al (2022) DNA methylation: a promising approach in management of Alzheimer’s disease and other neurodegenerative disorders. Biology (Basel) 11(1):90

    CAS  PubMed  Google Scholar 

  • Kawahara Y (2014) Human diseases caused by germline and somatic abnormalities in microRNA and microRNA-related genes. Congenit Anom (Kyoto) 54(1):12–21

    Article  CAS  PubMed  Google Scholar 

  • Killoran A et al (2013) Characterization of the Huntington intermediate CAG repeat expansion phenotype in PHAROS. Neurology 80(22):2022–2027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim A et al (2021) New avenues for the treatment of Huntington’s disease. Int J Mol Sci 22(16):8363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura H (2013) Histone modifications for human epigenome analysis. J Hum Genet 58(7):439–445

    Article  CAS  PubMed  Google Scholar 

  • Kumar V et al (2022) Understanding the role of histone deacetylase and their inhibitors in neurodegenerative disorders: current targets and future perspective. Curr Neuropharmacol 20(1):158–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunkanjanawan T et al (2016) miR-196a ameliorates cytotoxicity and cellular phenotype in transgenic Huntington’s disease monkey neural cells. PLoS One 11(9):e0162788

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurdyukov S, Bullock M (2016) DNA methylation analysis: choosing the right method. Biology (Basel) 5(1):3

    PubMed  Google Scholar 

  • Laird PW (2010) Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 11(3):191–203

    Article  CAS  PubMed  Google Scholar 

  • Le Gras S et al (2017) Altered enhancer transcription underlies Huntington’s disease striatal transcriptional signature. Sci Rep 7:42875

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Martelot G et al (2012) Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol 10(11):e1001442

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee J et al (2008) Monoallele deletion of CBP leads to pericentromeric heterochromatin condensation through ESET expression and histone H3 (K9) methylation. Hum Mol Genet 17(12):1774–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J et al (2013) Epigenetic mechanisms of neurodegeneration in Huntington’s disease. Neurotherapeutics 10(4):664–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liddelow SA et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Love IM et al (2012) The histone acetyltransferase PCAF regulates p21 transcription through stress-induced acetylation of histone H3. Cell Cycle 11(13):2458–2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu AT et al (2020) DNA methylation study of Huntington’s disease and motor progression in patients and in animal models. Nat Commun 11(1):4529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques SC et al (2010) Alzheimer’s disease: the quest to understand complexity. J Alzheimers Dis 21(2):373–383

    Article  CAS  PubMed  Google Scholar 

  • Martí E et al (2010) A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res 38(20):7219–7235

    Article  PubMed  PubMed Central  Google Scholar 

  • McFarland KN et al (2014) MeCP2: a novel huntingtin interactor. Hum Mol Genet 23(4):1036–1044

    Article  CAS  PubMed  Google Scholar 

  • Mingardi J et al (2018) miRNA editing: new insights into the fast control of gene expression in health and disease. Mol Neurobiol 55(10):7717–7727

    Article  CAS  PubMed  Google Scholar 

  • Mishra J, Chaudhary T, Kumar A (2014) Rosiglitazone synergizes the neuroprotective effects of valproic acid against quinolinic acid-induced neurotoxicity in rats: targeting PPARγ and HDAC pathways. Neurotox Res 26(2):130–151

    Article  CAS  PubMed  Google Scholar 

  • Mohr AM, Mott JL (2015) Overview of microRNA biology. Semin Liver Dis 35(1):3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moumné L, Betuing S, Caboche J (2013) Multiple aspects of gene dysregulation in Huntington’s disease. Front Neurol 4:127

    Article  PubMed  PubMed Central  Google Scholar 

  • Nance MA (2017) Genetics of Huntington disease. Handb Clin Neurol 144:3–14

    Article  PubMed  Google Scholar 

  • Ng CW et al (2013) Extensive changes in DNA methylation are associated with expression of mutant huntingtin. Proc Natl Acad Sci U S A 110(6):2354–2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Packer AN et al (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci 28(53):14341–14346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagiatakis C et al (2021) Epigenetics of aging and disease: a brief overview. Aging Clin Exp Res 33(4):737–745

    Article  PubMed  Google Scholar 

  • Pan Y et al (2016) Inhibition of DNA methyltransferases blocks mutant huntingtin-induced neurotoxicity. Sci Rep 6:31022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parbin S et al (2014) Histone deacetylases: a saga of perturbed acetylation homeostasis in cancer. J Histochem Cytochem 62(1):11–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi X et al (2017) Long non-coding RNA SNHG14 promotes microglia activation by regulating miR-145-5p/PLA2G4A in cerebral infarction. Neuroscience 348:98–106

    Article  CAS  PubMed  Google Scholar 

  • Ramazi S, Allahverdi A, Zahiri J (2020) Evaluation of post-translational modifications in histone proteins: a review on histone modification defects in developmental and neurological disorders. J Biosci 45:135

    Article  CAS  PubMed  Google Scholar 

  • Ratovitski T et al (2015) PRMT5-mediated symmetric arginine dimethylation is attenuated by mutant huntingtin and is impaired in Huntington’s disease (HD). Cell Cycle 14(11):1716–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remely M et al (2015) Therapeutic perspectives of epigenetically active nutrients. Br J Pharmacol 172(11):2756–2768

    Article  CAS  PubMed  Google Scholar 

  • Ryu H et al (2006) ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington’s disease. Proc Natl Acad Sci U S A 103(50):19176–19181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saba J et al (2022) Neuroinflammation in Huntington’s disease: a starring role for astrocyte and microglia. Curr Neuropharmacol 20(6):1116–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadri-Vakili G, Cha JH (2006) Histone deacetylase inhibitors: a novel therapeutic approach to Huntington’s disease (complex mechanism of neuronal death). Curr Alzheimer Res 3(4):403–408

    Article  CAS  PubMed  Google Scholar 

  • Schaffert LN, Carter WG (2020) Do post-translational modifications influence protein aggregation in neurodegenerative diseases: a systematic review. Brain Sci 10(4):232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schueller E et al (2020) Dysregulation of histone acetylation pathways in hippocampus and frontal cortex of Alzheimer’s disease patients. Eur Neuropsychopharmacol 33:101–116

    Article  CAS  PubMed  Google Scholar 

  • Shukla S, Tekwani BL (2020) Histone deacetylases inhibitors in neurodegenerative diseases, neuroprotection and neuronal differentiation. Front Pharmacol 11:537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siebzehnrübl FA et al (2018) Early postnatal behavioral, cellular, and molecular changes in models of Huntington disease are reversible by HDAC inhibition. Proc Natl Acad Sci U S A 115(37):E8765–E8774

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinha M, Mukhopadhyay S, Bhattacharyya NP (2012) Mechanism(s) of alteration of micro RNA expressions in Huntington’s disease and their possible contributions to the observed cellular and molecular dysfunctions in the disease. Neuromolecular Med 14(4):221–243

    Article  CAS  PubMed  Google Scholar 

  • Sixto-López Y, Bello M, Correa-Basurto J (2020) Exploring the inhibitory activity of valproic acid against the HDAC family using an MMGBSA approach. J Comput Aided Mol Des 34(8):857–878

    Article  PubMed  Google Scholar 

  • Song L et al (2005) Specific method for the determination of genomic DNA methylation by liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Chem 77(2):504–510

    Article  CAS  PubMed  Google Scholar 

  • Soragni E et al (2011) Evaluation of histone deacetylase inhibitors as therapeutics for neurodegenerative diseases. Methods Mol Biol 793:495–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stack EC et al (2007) Modulation of nucleosome dynamics in Huntington’s disease. Hum Mol Genet 16(10):1164–1175

    Article  CAS  PubMed  Google Scholar 

  • Subhramanyam CS et al (2019) Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol 94:112–120

    Article  CAS  PubMed  Google Scholar 

  • Sugama S et al (2009) Possible roles of microglial cells for neurotoxicity in clinical neurodegenerative diseases and experimental animal models. Inflamm Allergy Drug Targets 8(4):277–284

    Article  CAS  PubMed  Google Scholar 

  • Süssmuth SD et al (2015) An exploratory double-blind, randomized clinical trial with selisistat, a SirT1 inhibitor, in patients with Huntington’s disease. Br J Clin Pharmacol 79(3):465–476

    Article  PubMed  PubMed Central  Google Scholar 

  • Tafrihi M, Hasheminasab E (2019) MiRNAs: biology, biogenesis, their web-based tools, and databases. Microrna 8(1):4–27

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Yu JT, Tan L (2015) Causes and consequences of microRNA dysregulation in neurodegenerative diseases. Mol Neurobiol 51(3):1249–1262

    Article  CAS  PubMed  Google Scholar 

  • Tapias A, Wang ZQ (2017) Lysine acetylation and deacetylation in brain development and neuropathies. Genomics Proteomics Bioinformatics 15(1):19–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teleanu DM et al (2022) An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int J Mol Sci 23(11):5938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas EA et al (2008) The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington’s disease transgenic mice. Proc Natl Acad Sci U S A 105(40):15564–15569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valor LM (2017) Understanding histone deacetylation in Huntington’s disease. Oncotarget 8(4):5660–5661

    Article  PubMed  Google Scholar 

  • Valor LM, Guiretti D (2014) What’s wrong with epigenetics in Huntington’s disease? Neuropharmacology 80:103–114

    Article  CAS  PubMed  Google Scholar 

  • Vashishtha M et al (2013) Targeting H3K4 trimethylation in Huntington disease. Proc Natl Acad Sci U S A 110(32):E3027–E3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villar-Menéndez I et al (2013) Increased 5-methylcytosine and decreased 5-hydroxymethylcytosine levels are associated with reduced striatal A2AR levels in Huntington’s disease. Neuromolecular Med 15(2):295–309

    Article  PubMed  Google Scholar 

  • Wang F et al (2013) Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntington’s disease. Hum Mol Genet 22(18):3641–3653

    Article  CAS  PubMed  Google Scholar 

  • Wen Y, Yu Y, Fu X (2017) LncRNA Gm4419 contributes to OGD/R injury of cerebral microglial cells via IκB phosphorylation and NF-κB activation. Biochem Biophys Res Commun 487(4):923–929

    Article  CAS  PubMed  Google Scholar 

  • Wood H (2013) Neurodegenerative disease: altered DNA methylation and RNA splicing could be key mechanisms in Huntington disease. Nat Rev Neurol 9(3):119

    Article  PubMed  Google Scholar 

  • Yang S et al (2020) Lack of RAN-mediated toxicity in Huntington’s disease knock-in mice. Proc Natl Acad Sci U S A 117(8):4411–4417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yapijakis C (2017) Huntington disease: genetics, prevention, and therapy approaches. Adv Exp Med Biol 987:55–65

    Article  PubMed  Google Scholar 

  • Yeh HH et al (2013) Histone deacetylase class II and acetylated core histone immunohistochemistry in human brains with Huntington’s disease. Brain Res 1504:16–24

    Article  CAS  PubMed  Google Scholar 

  • Ying SY, Chang DC, Lin SL (2018) The microRNA. Methods Mol Biol 1733:1–25

    Article  CAS  PubMed  Google Scholar 

  • Younesian S et al (2022) The DNA methylation in neurological diseases. Cells 11(21):3439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y et al (2016) MicroRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson’s disease. Mol Neurodegener 11:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmer-Bensch G (2020) Epigenomic remodeling in Huntington’s disease-master or servant? Epigenomes 4(3):15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zsindely N, Bodai L (2018) Histone methylation in Huntington’s disease: are bivalent promoters the critical targets? Neural Regen Res 13(7):1191–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zsindely N, Siági F, Bodai L (2021) DNA methylation in Huntington’s disease. Int J Mol Sci 22(23):12736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuccato C et al (2003) Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 35(1):76–83

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors disclose that they did not receive any funding, grants, or other forms of support while preparing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s inception and design. PT, RA, and PK prepared the materials, collected data, and analysed the results. PT and RA wrote the first draught of the manuscript, and PK provided feedback on prior draughts. The final manuscript was read and approved by all authors.

Corresponding author

Correspondence to Puneet Kumar.

Ethics declarations

Conflict of interest

There are no relevant financial or non-financial interests to disclose for the authors.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temgire, P., Arthur, R. & Kumar, P. Neuroinflammation and the role of epigenetic-based therapies for Huntington’s disease management: the new paradigm. Inflammopharmacol (2024). https://doi.org/10.1007/s10787-024-01477-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10787-024-01477-0

Keywords

Navigation