Skip to main content

Advertisement

Log in

Repurposing Vorinostat for the Treatment of Disorders Affecting Brain

  • Review
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Based on the findings in recent years, we summarize the therapeutic potential of vorinostat (VOR), the first approved histone deacetylase (HDAC) inhibitor, in disorders of brain, and strategies to improve drug efficacy and reduce side effects. Scientific evidences provide a strong case for the therapeutic utility of VOR in various disorders affecting brain, including stroke, Alzheimer’s disease, frontotemporal dementia, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, X‐linked adrenoleukodystrophy, epilepsy, Niemann-Pick type C disease, and neuropsychiatric disorders. Further elucidation of the neuroprotective and neurorestorative properties of VOR using proper clinical study designs could provide momentum towards its clinical application. To improve the therapeutic prospect, concerns on systemic toxicity and off-target actions need to be addressed along with the improvement in formulation and delivery aspects, especially with respect to solubility, permeability, and pharmacokinetic properties. Newer approaches in this regard include poly(ethylene glycol)-b-poly(dl-lactic acid) micelles, VOR-pluronic F127 micelles, encapsulation of iron complexes of VOR into PEGylated liposomes, human serum albumin bound VOR nanomedicine, magnetically guided layer-by-layer assembled nanocarriers, as well as convection-enhanced delivery. Even though targeting specific class or isoform of HDAC is projected as advantageous over pan-HDAC inhibitor like VOR, in terms of adverse effects and efficacy, till clinical validation, the idea is debated. As the VOR treatment-related adverse changes are mostly found reversible, further optimization of the therapeutic strategies with respect to dose, dosage regimen, and formulations of VOR could propel its clinical prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABCD1:

ATP‐binding cassette subfamily D member 1

BBB:

Blood–brain barrier

BDNF:

Brain-derived neurotrophic factor

cAMP:

Cyclic adenosine monophosphate

CREB:

CAMP response element binding protein

CRTC1:

CREB-regulated transcription coactivator 1

CBP:

CREB binding protein

CNS:

Central nervous system

CTCL:

Cutaneous T-cell lymphoma

DMSO:

Dimethyl sulfoxide

GBM:

Glioblastoma multiforme

GDNF:

Glial cell-derived neurotrophic factor

HATs:

Histone acetyltransferases

HDACs:

Histone deacetylases

Hsp:

Heat shock protein

iPSC:

Induced pluripotent stem cells

NPC:

Niemann-Pick Type C

NR2B:

N-Methyl-D-aspartate receptor 2 subunit B

PTCL:

Peripheral T-cell lymphoma

SAHA:

Suberoylanilide hydroxamic acid

SMA:

Spinal muscular atrophy

SMN:

Survival motor neuron

VLCFA:

Very long‐chain fatty acids

VOR:

Vorinostat

References

  • Abel, T., & Zukin, R. S. (2008). Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Current Opinion in Pharmacology, 8(1), 57–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alarcón, J. M., Malleret, G., Touzani, K., Vronskaya, S., Ishii, S., Kandel, E. R., & Barco, A. (2004). Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron, 42(6), 947–959

    Article  PubMed  Google Scholar 

  • Almeida, S., Gao, F., Coppola, G., & Gao, F.-B. (2016). Suberoylanilide hydroxamic acid increases progranulin production in iPSC-derived cortical neurons of frontotemporal dementia patients. Neurobiology of Aging, 42, 35–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alquezar, C., Esteras, N., de la Encarnación, A., Moreno, F., de Munain, A. L., & Martín-Requero, Á. (2015). Increasing progranulin levels and blockade of the ERK1/2 pathway: Upstream and downstream strategies for the treatment of progranulin deficient frontotemporal dementia. European Neuropsychopharmacology, 25(3), 386–403

    Article  CAS  PubMed  Google Scholar 

  • Athira, K. V., Bandopadhyay, S., Samudrala, P. K., Naidu, V., Lahkar, M., & Chakravarty, S. (2020). An overview of the heterogeneity of major depressive disorder: Current knowledge and future prospective. Current Neuropharmacology, 18(3), 168–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Athira, K., Madhana, R. M., Lahkar, M., Sinha, S., & Naidu, V. (2018). Antidepressant activity of vorinostat is associated with amelioration of oxidative stress and inflammation in a corticosterone-induced chronic stress model in mice. Behavioural Brain Research, 344, 73–84

    Article  CAS  Google Scholar 

  • Athira, K., Wahul, A. B., Soren, K., Das, T., Dey, S., Samudrala, P. K., Kumar, A., Lahkar, M., & Chakravarty, S. (2021). Differential modulation of GR signaling and HDACs in the development of resilient/vulnerable phenotype and antidepressant-like response of vorinostat. Psychoneuroendocrinology, 124, 105083

    Article  Google Scholar 

  • Atluri, V. S. R., Pilakka-Kanthikeel, S., Samikkannu, T., Sagar, V., Kurapati, K. R. V., Saxena, S. K., Yndart, A., Raymond, A., Ding, H., & Hernandez, O. (2014). Vorinostat positively regulates synaptic plasticity genes expression and spine density in HIV infected neurons: Role of nicotine in progression of HIV-associated neurocognitive disorder. Molecular Brain, 7(1), 37

    Article  PubMed  PubMed Central  Google Scholar 

  • Benito, E., Urbanke, H., Ramachandran, B., Barth, J., Halder, R., Awasthi, A., Jain, G., Capece, V., Burkhardt, S., & Navarro-Sala, M. (2015). HDAC inhibitor–dependent transcriptome and memory reinstatement in cognitive decline models. The Journal of Clinical Investigation, 125(9), 3572–3584

    Article  PubMed  PubMed Central  Google Scholar 

  • Berger, J., & Gärtner, J. (2006). X-linked adrenoleukodystrophy: Clinical, biochemical and pathogenetic aspects. Biochimica et Biophysica Acta B, 1763(12), 1721–1732

    Article  CAS  Google Scholar 

  • Berton, O., McClung, C. A., DiLeone, R. J., Krishnan, V., Renthal, W., Russo, S. J., Graham, D., Tsankova, N. M., Bolanos, C. A., & Rios, M. (2006). Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science, 311(5762), 864–868

    Article  CAS  PubMed  Google Scholar 

  • Broide, R. S., Redwine, J. M., Aftahi, N., Young, W., Bloom, F. E., & Winrow, C. J. (2007). Distribution of histone deacetylases 1–11 in the rat brain. Journal of Molecular Neuroscience, 31(1), 47–58

    Article  CAS  PubMed  Google Scholar 

  • Buchwald, M., Krämer, O. H., & Heinzel, T. (2009). HDACi–targets beyond chromatin. Cancer Letters, 280(2), 160–167

    Article  CAS  PubMed  Google Scholar 

  • Cenik, B., Sephton, C. F., Dewey, C. M., Xian, X., Wei, S., Yu, K., Niu, W., Coppola, G., Coughlin, S. E., & Lee, S. E. (2011). Suberoylanilide hydroxamic acid (vorinostat) up-regulates progranulin transcription rational therapeutic approach to frontotemporal dementia. Journal of Biological Chemistry, 286(18), 16101–16108

    Article  CAS  Google Scholar 

  • Chakravarty, S., Bhat, U. A., Reddy, R. G., Gupta, P., & Kumar, A. (2014a). Histone deacetylase inhibitors and psychiatric disorders. Epigenetics in Psychiatry, 2, 515–544

    Article  Google Scholar 

  • Chakravarty, S., Pathak, S. S., Maitra, S., Khandelwal, N., Chandra, K. B., & Kumar, A. (2014b). Epigenetic regulatory mechanisms in stress-induced behavior. International Review of Neurobiology., 115, 117–154

    Article  PubMed  Google Scholar 

  • Chandran, P., Kavalakatt, A., Malarvizhi, G. L., Vasanthakumari, D. R. V. N., Retnakumari, A. P., Sidharthan, N., Pavithran, K., Nair, S., & Koyakutty, M. (2014). Epigenetics targeted protein-vorinostat nanomedicine inducing apoptosis in heterogeneous population of primary acute myeloid leukemia cells including refractory and relapsed cases. Nanomedicine: Nanotechnology, Biology and Medicine, 10(4), 721–732

    Article  CAS  Google Scholar 

  • Chen, S., Wu, H., Ossola, B., Schendzielorz, N., Wilson, B. C., Chu, C.-H., Chen, S., Wang, Q., Zhang, D., & Qian, L. (2012). Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, protects dopaminergic neurons from neurotoxin-induced damage. British Journal of Pharmacology, 165(2), 494–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary, C., Kumar, C., Gnad, F., Nielsen, M. L., Rehman, M., Walther, T. C., Olsen, J. V., & Mann, M. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 325(5942), 834–840

    Article  CAS  PubMed  Google Scholar 

  • Covington, H. E., Maze, I., LaPlant, Q. C., Vialou, V. F., Ohnishi, Y. N., Berton, O., Fass, D. M., Renthal, W., Rush, A. J., & Wu, E. Y. (2009). Antidepressant actions of histone deacetylase inhibitors. Journal of Neuroscience, 29(37), 11451–11460

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado-Tejedor, M., Garcia-Barroso, C., Sanzhez-Arias, J., Mederos, S., Rabal, O., Ugarte, A., Franco, R., Pascual-Lucas, M., Segura, V., & Perea, G. (2015). Concomitant histone deacetylase and phosphodiesterase 5 inhibition synergistically prevents the disruption in synaptic plasticity and it reverses cognitive impairment in a mouse model of Alzheimer’s disease. Clinical Epigenetics, 7(1), 108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Ruijter, A. J., Van Gennip, A. H., Caron, H. N., Stephan, K., & Van Kuilenburg, A. B. (2003). Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochemical Journal, 370(3), 737–749

    Article  PubMed Central  Google Scholar 

  • De Souza, C. (2015). P Chatterji B: HDAC inhibitors as novel anti-cancer therapeutics. Recent Patents on Anti-cancer Drug Discovery, 10(2), 145–162

    Article  PubMed  Google Scholar 

  • De Souza, C., Lindstrom, A. R., Ma, Z., & Chatterji, B. P. (2020). Nanomaterials as potential transporters of HDAC inhibitors. Medicine in Drug Discovery, 6, 100040

    Article  Google Scholar 

  • Di, X.-J., Han, D.-Y., Wang, Y.-J., Chance, M. R., & Mu, T.-W. (2013). SAHA enhances proteostasis of epilepsy-associated α1 (A322D) β2γ2 GABAA receptors. Chemistry & Biology, 20(12), 1456–1468

    Article  CAS  Google Scholar 

  • Didonna, A., & Opal, P. (2015). The promise and perils of HDAC inhibitors in neurodegeneration. Annals of Clinical and Translational Neurology, 2(1), 79–101

    Article  CAS  PubMed  Google Scholar 

  • Dokmanovic, M., Clarke, C., & Marks, P. A. (2007). Histone deacetylase inhibitors: Overview and perspectives. Molecular Cancer Research, 5(10), 981–989

    Article  CAS  PubMed  Google Scholar 

  • Drummond, D. C., Noble, C. O., Kirpotin, D. B., Guo, Z., Scott, G. K., & Benz, C. C. (2005). Clinical development of histone deacetylase inhibitors as anticancer agents. Annual Review of Pharmacology and Toxicology, 45, 495–528

    Article  CAS  PubMed  Google Scholar 

  • Durisic, N., Keramidas, A., Dixon, C. L., & Lynch, J. W. (2018). SAHA (vorinostat) corrects inhibitory synaptic deficits caused by missense epilepsy mutations to the GABAA receptor γ2 subunit. Frontiers in Molecular Neuroscience, 11, 89

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckschlager, T., Plch, J., Stiborova, M., & Hrabeta, J. (2017). Histone deacetylase inhibitors as anticancer drugs. International Journal of Molecular Sciences, 18(7), 1414

    Article  PubMed Central  Google Scholar 

  • Eyüpoglu, I. Y., Hahnen, E., Buslei, R., Siebzehnrübl, F. A., Savaskan, N. E., Lüders, M., Tränkle, C., Wick, W., Weller, M., & Fahlbusch, R. (2005). Suberoylanilide hydroxamic acid (SAHA) has potent anti-glioma properties in vitro, ex vivo and in vivo. Journal of Neurochemistry, 93(4), 992–999

    Article  PubMed  Google Scholar 

  • Faraco, G., Pancani, T., Formentini, L., Mascagni, P., Fossati, G., Leoni, F., Moroni, F., & Chiarugi, A. (2006). Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Molecular Pharmacology, 70(6), 1876–1884

    Article  CAS  PubMed  Google Scholar 

  • Faria Freitas, M., Cuendet, M., & Bertrand, P. (2018). HDAC inhibitors: a 2013–2017 patent survey. Expert Opinion on Therapeutic Patents, 28(5), 365–381

    Article  CAS  Google Scholar 

  • Finnin, M. S., Donigian, J. R., Cohen, A., Richon, V. M., Rifkind, R. A., Marks, P. A., Breslow, R., & Pavletich, N. P. (1999). Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature, 401(6749), 188–193

    Article  CAS  PubMed  Google Scholar 

  • Fujita, Y., Morinobu, S., Takei, S., Fuchikami, M., Matsumoto, T., Yamamoto, S., & Yamawaki, S. (2012). Vorinostat, a histone deacetylase inhibitor, facilitates fear extinction and enhances expression of the hippocampal NR2B-containing NMDA receptor gene. Journal of Psychiatric Research, 46(5), 635–643

    Article  PubMed  Google Scholar 

  • Galanis, E., Jaeckle, K. A., Maurer, M. J., Reid, J. M., Ames, M. M., Hardwick, J. S., Reilly, J. F., Loboda, A., Nebozhyn, M., & Fantin, V. R. (2009). Phase II trial of vorinostat in recurrent glioblastoma multiforme: A north central cancer treatment group study. Journal of Clinical Oncology, 27(12), 2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gangisetty, O. & Murugan, S. (2016). Epigenetic modifications in neurological diseases: natural products as epigenetic modulators a treatment strategy. In The benefits of natural products for neurodegenerative diseases. (pp. 1–25). Springer.

  • Gao, L., Cueto, M. A., Asselbergs, F., & Atadja, P. (2002). Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. Journal of Biological Chemistry, 277(28), 25748–25755

    Article  CAS  Google Scholar 

  • Ge, Z., Da, Y., Xue, Z., Zhang, K., Zhuang, H., Peng, M., Li, Y., Li, W., Simard, A., & Hao, J. (2013). Vorinostat, a histone deacetylase inhibitor, suppresses dendritic cell function and ameliorates experimental autoimmune encephalomyelitis. Experimental Neurology, 241, 56–66

    Article  CAS  PubMed  Google Scholar 

  • Gill, S. S. (2019). Method of treating a CNS disorder using a water-soluble histone deacetylase inhibitor. Google Patents.

    Google Scholar 

  • Golden, S. A., Christoffel, D. J., Heshmati, M., Hodes, G. E., Magida, J., Davis, K., Cahill, M. E., Dias, C., Ribeiro, E., & Ables, J. L. (2013). Epigenetic regulation of RAC1 induces synaptic remodeling in stress disorders and depression. Nature Medicine, 19(3), 337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grayson, D. R., Kundakovic, M., & Sharma, R. P. (2010). Is there a future for histone deacetylase inhibitors in the pharmacotherapy of psychiatric disorders? Molecular Pharmacology, 77(2), 126–135

    Article  CAS  PubMed  Google Scholar 

  • Gryder, B. E., Sodji, Q. H., & Oyelere, A. K. (2012). Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Medicinal Chemistry, 4(4), 505–524

    Article  CAS  PubMed  Google Scholar 

  • Guan, J.-S., Haggarty, S. J., Giacometti, E., Dannenberg, J.-H., Joseph, N., Gao, J., Nieland, T. J., Zhou, Y., Wang, X., & Mazitschek, R. (2009). HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 459(7243), 55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haberland, M., Montgomery, R. L., & Olson, E. N. (2009). The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nature Reviews Genetics, 10(1), 32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahnen, E., Eyüpoglu, I. Y., Brichta, L., Haastert, K., Tränkle, C., Siebzehnrübl, F. A., Riessland, M., Hölker, I., Claus, P., & Romstöck, J. (2006). In vitro and ex vivo evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy. Journal of Neurochemistry, 98(1), 193–202

    Article  CAS  PubMed  Google Scholar 

  • Hanson, J. E., La, H., Plise, E., Chen, Y.-H., Ding, X., Hanania, T., Sabath, E. V., Alexandrov, V., Brunner, D., & Leahy, E. (2013a). SAHA enhances synaptic function and plasticity in vitro but has limited brain availability in vivo and does not impact cognition. PLoS ONE, 8(7), e69964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson, J. E., La, H., Plise, E., Chen, Y.-H., Ding, X., Hanania, T., Sabath, E. V., Alexandrov, V., Brunner, D., & Leahy, E. (2013b). SAHA enhances synaptic function and plasticity in vitro but has limited brain availability in vivo and does not impact cognition. PLoS ONE, 8(7), e69968

    Article  Google Scholar 

  • Hauke, J., Riessland, M., Lunke, S., Eyüpoglu, I. Y., Blümcke, I., El-Osta, A., Wirth, B., & Hahnen, E. (2009). Survival motor neuron gene 2 silencing by DNA methylation correlates with spinal muscular atrophy disease severity and can be bypassed by histone deacetylase inhibition. Human Molecular Genetics, 18(2), 304–317

    Article  CAS  PubMed  Google Scholar 

  • Hockly, E., Richon, V. M., Woodman, B., Smith, D. L., Zhou, X., Rosa, E., Sathasivam, K., Ghazi-Noori, S., Mahal, A., & Lowden, P. A. (2003). Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proceedings of the National Academy of Sciences, 100(4), 2041–2046

    Article  CAS  Google Scholar 

  • Hoodin, F., LaLonde, L., Errickson, J., Votruba, K., Kentor, R., Gatza, E., Reddy, P., & Choi, S. W. (2019). Cognitive function and quality of life in vorinostat-treated patients after matched unrelated donor myeloablative conditioning hematopoietic cell transplantation. Biology of Blood and Marrow Transplantation, 25(2), 343–353

    Article  CAS  PubMed  Google Scholar 

  • Jakovcevski, M., & Akbarian, S. (2012). Epigenetic mechanisms in neurological disease. Nature Medicine, 18(8), 1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayant, R. D., Atluri, V. S., Agudelo, M., Sagar, V., Kaushik, A., & Nair, M. (2015). Sustained-release nanoART formulation for the treatment of neuroAIDS. International Journal of Nanomedicine, 10, 1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jhelum, P., Karisetty, B., Kumar, A., & Chakravarty, S. (2017). Implications of epigenetic mechanisms and their targets in cerebral ischemia models. Current Neuropharmacology, 15(6), 815–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jochems, J., Boulden, J., Lee, B. G., Blendy, J. A., Jarpe, M., Mazitschek, R., Van Duzer, J. H., Jones, S., & Berton, O. (2014). Antidepressant-like properties of novel HDAC6-selective inhibitors with improved brain bioavailability. Neuropsychopharmacology, 39(2), 389

    Article  CAS  PubMed  Google Scholar 

  • Johnstone, R. W., & Licht, J. D. (2003). Histone deacetylase inhibitors in cancer therapy: Is transcription the primary target? Cancer Cell, 4(1), 13–18

    Article  CAS  PubMed  Google Scholar 

  • Kazantsev, A. G., & Thompson, L. M. (2008). Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nature Reviews Drug Discovery, 7(10), 854–868

    Article  CAS  PubMed  Google Scholar 

  • Kelly, W. K., O’Connor, O. A., Krug, M. L., Chiao, J. H., Heaney, M., Curley, T., MacGregore-Cortelli, B., Tong, W., Secrist, J. P., & Schwartz, L. (2005). Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. Journal of Clinical Oncology, 23(17), 3923

    Article  CAS  PubMed  Google Scholar 

  • Kelly, W. K., Richon, V. M., O’Connor, O., Curley, T., MacGregor-Curtelli, B., Tong, W., Klang, M., Schwartz, L., Richardson, S., & Rosa, E. (2003). Phase I clinical trial of histone deacetylase inhibitor: Suberoylanilide hydroxamic acid administered intravenously. Clinical Cancer Research, 9(10), 3578–3588

    CAS  PubMed  Google Scholar 

  • Kidd, S. K., & Schneider, J. S. (2010). Protection of dopaminergic cells from MPP+-mediated toxicity by histone deacetylase inhibition. Brain Research, 1354, 172–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilgore, M., Miller, C. A., Fass, D. M., Hennig, K. M., Haggarty, S. J., Sweatt, J. D., & Rumbaugh, G. (2010). Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology, 35(4), 870–880

    Article  CAS  PubMed  Google Scholar 

  • Kontopoulos, E., Parvin, J. D., & Feany, M. B. (2006). α-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Human Molecular Genetics, 15(20), 3012–3023

    Article  CAS  PubMed  Google Scholar 

  • Kretsovali, A., Hadjimichael, C., & Charmpilas, N. (2012). Histone deacetylase inhibitors in cell pluripotency, differentiation, and reprogramming. Stem Cells International, 2012, 1–10

    Article  Google Scholar 

  • Kuta, R., Larochelle, N., Fernandez, M., Pal, A., Minotti, S., Tibshirani, M., Louis, K. S., Gentil, B. J., Nalbantoglu, J. N., & Hermann, A. (2020). Depending on the stress, histone deacetylase inhibitors act as heat shock protein co-inducers in motor neurons and potentiate arimoclomol, exerting neuroprotection through multiple mechanisms in ALS models. Cell Stress and Chaperones, 1, 1–19

    Google Scholar 

  • Kv, A., Madhana, R. M., Bais, A. K., Singh, V. B., Malik, A., Sinha, S., Lahkar, M., Kumar, P., & Samudrala, P. K. (2020). Cognitive improvement by vorinostat through modulation of endoplasmic reticulum stress in a corticosterone-induced chronic stress model in mice. ACS Chemical Neuroscience, 11(17), 2649–2657

    Article  CAS  Google Scholar 

  • Lai, J.-I., Leman, L. J., Ku, S., Vickers, C. J., Olsen, C. A., Montero, A., Ghadiri, M. R., & Gottesfeld, J. M. (2017). Cyclic tetrapeptide HDAC inhibitors as potential therapeutics for spinal muscular atrophy: Screening with iPSC-derived neuronal cells. Bioorganic & Medicinal Chemistry Letters, 27(15), 3289–3293

    Article  CAS  Google Scholar 

  • Lee, P., Murphy, B., Miller, R., Menon, V., Banik, N. L., Giglio, P., Lindhorst, S. M., & Varma, A. K. (2015). Mechanisms and clinical significance of histone deacetylase inhibitors: epigenetic glioblastoma therapy. Anticancer Research, 35(2), 615–625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, S., Lu, X., Shao, Q., Chen, Z., Huang, Q., Jiao, Z., Huang, X., Yue, M., Peng, J., & Zhou, X. (2019). Early histone deacetylase inhibition mitigates ischemia/reperfusion brain injury by reducing microglia activation and modulating their phenotype. Frontiers in Neurology, 10, 893

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindemann, R., Newbold, A., Whitecross, K., Cluse, L., Frew, A., Ellis, L., Williams, S., Wiegmans, A., Dear, A., & Scott, C. (2007). Analysis of the apoptotic and therapeutic activities of histone deacetylase inhibitors by using a mouse model of B cell lymphoma. Proceedings of the National Academy of Sciences, 104(19), 8071–8076

    Article  CAS  Google Scholar 

  • Mai, A., Rotili, D., Valente, S., & Kazantsev, A. G. (2009). Histone deacetylase inhibitors and neurodegenerative disorders: Holding the promise. Current Pharmaceutical Design, 15(34), 3940–3957

    Article  CAS  PubMed  Google Scholar 

  • Mann, B. S., Johnson, J. R., Cohen, M. H., Justice, R., & Pazdur, R. (2007). FDA approval summary: Vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. The Oncologist, 12(10), 1247–1252

    Article  CAS  PubMed  Google Scholar 

  • Marks, P. A., & Breslow, R. (2007). Dimethyl sulfoxide to vorinostat: Development of this histone deacetylase inhibitor as an anticancer drug. Nature Biotechnology, 25(1), 84–90

    Article  CAS  PubMed  Google Scholar 

  • Marks, P. A., & Dokmanovic, M. (2005). Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert opinion on investigational drugs, 14(12), 1497–1511

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin, F., & La Thangue, N. B. (2004). Histone deacetylase inhibitors open new doors in cancer therapy. Biochemical Pharmacology, 68(6), 1139–1144

    Article  CAS  PubMed  Google Scholar 

  • Meng, J., Li, Y., Camarillo, C., Yao, Y., Zhang, Y., Xu, C., & Jiang, L. (2014). The anti-tumor histone deacetylase inhibitor SAHA and the natural flavonoid curcumin exhibit synergistic neuroprotection against amyloid-beta toxicity. PLoS ONE, 9(1), e85570

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng, J., Li, Y., Zhang, M., Li, W., Zhou, L., Wang, Q., Lin, L., Jiang, L., & Zhu, W. (2019). A combination of curcumin, vorinostat and silibinin reverses Aβ-induced nerve cell toxicity via activation of AKT-MDM2-p53 pathway. PeerJ, 7, e6716

    Article  PubMed  PubMed Central  Google Scholar 

  • Meylan, E. M., Halfon, O., Magistretti, P. J., & Cardinaux, J.-R. (2016). The HDAC inhibitor SAHA improves depressive-like behavior of CRTC1-deficient mice: possible relevance for treatment-resistant depression. Neuropharmacology, 107, 111–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mielcarek, M., Benn, C. L., Franklin, S. A., Smith, D. L., Woodman, B., Marks, P. A., & Bates, G. P. (2011). SAHA decreases HDAC 2 and 4 levels in vivo and improves molecular phenotypes in the R6/2 mouse model of Huntington’s disease. PLoS ONE, 6(11), e203

    Article  Google Scholar 

  • Mitsiades, C. S., Mitsiades, N. S., McMullan, C. J., Poulaki, V., Shringarpure, R., Hideshima, T., Akiyama, M., Chauhan, D., Munshi, N., & Gu, X. (2004). Transcriptional signature of histone deacetylase inhibition in multiple myeloma: Biological and clinical implications. Proceedings of the National Academy of Sciences, 101(2), 540–545

    Article  CAS  Google Scholar 

  • Mohamed, E. A., Hashim, I. I. A., Yusif, R. M., Suddek, G. M., Shaaban, A. A. A., & Badria, F. A. E. (2017). Enhanced in vitro cytotoxicity and anti-tumor activity of vorinostat-loaded pluronic micelles with prolonged release and reduced hepatic and renal toxicities. European Journal of Pharmaceutical Sciences, 96, 232–242

    Article  CAS  PubMed  Google Scholar 

  • Mohamed, E. A., Zhao, Y., Meshali, M. M., Remsberg, C. M., Borg, T. M., Foda, A. M. M., Takemoto, J. K., Sayre, C. L., Martinez, S. E., & Davies, N. M. (2012). Vorinostat with sustained exposure and high solubility in poly (ethylene glycol)-b-poly (dl-lactic acid) micelle nanocarriers: Characterization and effects on pharmacokinetics in rat serum and urine. Journal of Pharmaceutical Sciences, 101(10), 3787–3798

    Article  CAS  PubMed  Google Scholar 

  • Morris, M. J., & Monteggia, L. M. (2013). Unique functional roles for class I and class II histone deacetylases in central nervous system development and function. International Journal of Developmental Neuroscience, 31(6), 370–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller, S., Yang, X., Sottero, T. L., Gragg, A., Prasad, G., Polley, M.-Y., Weiss, W. A., Matthay, K. K., Davidoff, A. M., & DuBois, S. G. (2011). Cooperation of the HDAC inhibitor vorinostat and radiation in metastatic neuroblastoma: Efficacy and underlying mechanisms. Cancer Letters, 306(2), 223–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munkacsi, A. B., Hammond, N., Schneider, R. T., Senanayake, D. S., Higaki, K., Lagutin, K., Bloor, S. J., Ory, D. S., Maue, R. A., & Chen, F. W. (2017). Normalization of hepatic homeostasis in the Npc1nmf164 mouse model of Niemann-Pick type C disease treated with the histone deacetylase inhibitor vorinostat. Journal of Biological Chemistry, 292(11), 4395–4410

    Article  CAS  Google Scholar 

  • Musolino, P. L., Gong, Y., Snyder, J. M., Jimenez, S., Lok, J., Lo, E. H., Moser, A. B., Grabowski, E. F., Frosch, M. P., & Eichler, F. S. (2015). Brain endothelial dysfunction in cerebral adrenoleukodystrophy. Brain, 138(11), 3206–3220

    Article  PubMed  PubMed Central  Google Scholar 

  • Nuutinen, T., Suuronen, T., Kauppinen, A., & Salminen, A. (2010). Valproic acid stimulates clusterin expression in human astrocytes: Implications for Alzheimer’s disease. Neuroscience Letters, 475(2), 64–68

    Article  CAS  PubMed  Google Scholar 

  • Olsen, E., Kim, Y., Kuzel, T., Pacheco, T., Foss, F., Parker, S., Wang, J., Frankel, S., Lis, J., & Duvic, M. (2006). Vorinostat (suberoylanilide hydroxamic acid, SAHA) is clinically active in advanced cutaneous T-cell lymphoma (CTCL): Results of a phase IIb trial. Journal of Clinical Oncology, 24(18 suppl), 7500–7500

    Article  Google Scholar 

  • Palmieri, D., Lockman, P. R., Thomas, F. C., Hua, E., Herring, J., Hargrave, E., Johnson, M., Flores, N., Qian, Y., & Vega-Valle, E. (2009). Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks. Clinical Cancer Research, 15(19), 6148–6157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peixoto, P., & Lansiaux, A. (2006). Histone-deacetylases inhibitors: from TSA to SAHA. Bulletin du Cancer, 93(1), 27–36

    CAS  PubMed  Google Scholar 

  • Pipalia, N. H., Subramanian, K., Mao, S., Ralph, H., Hutt, D. M., Scott, S. M., Balch, W. E., & Maxfield, F. R. (2017). Histone deacetylase inhibitors correct the cholesterol storage defect in most Niemann-Pick C1 mutant cells. Journal of Lipid Research, 58(4), 695–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price, S., & Dyke, H. J. (2007). Histone deacetylase inhibitors: An analysis of recent patenting activity. Expert Opinion on Therapeutic Patents, 17(7), 745–765

    Article  CAS  Google Scholar 

  • Rauniyar, N., Subramanian, K., Lavallée-Adam, M., Martínez-Bartolomé, S., Balch, W. E., & Yates, J. R. (2015). Quantitative proteomics of human fibroblasts with I1061T mutation in Niemann-Pick C1 (NPC1) protein provides insights into the disease pathogenesis. Molecular & Cellular Proteomics, 14(7), 1734–1749

    Article  CAS  Google Scholar 

  • Reddy, R. G., Surineni, G., Bhattacharya, D., Marvadi, S. K., Sagar, A., Kalle, A. M., Kumar, A., Kantevari, S., & Chakravarty, S. (2019). Crafting carbazole-based vorinostat and tubastatin-A-like histone deacetylase (HDAC) inhibitors with potent in vitro and in vivo neuroactive functions. ACS Omega, 4(17), 17279–17294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richon, V., Webb, Y., Merger, R., Sheppard, T., Jursic, B., Ngo, L., Civoli, F., Breslow, R., Rifkind, R., & Marks, P. (1996). Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. Proceedings of the National Academy of Sciences, 93(12), 5705–5708

    Article  CAS  Google Scholar 

  • Riessland, M., Ackermann, B., Förster, A., Jakubik, M., Hauke, J., Garbes, L., Fritzsche, I., Mende, Y., Blumcke, I., & Hahnen, E. (2010). SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy. Human Molecular Genetics, 19(8), 1492–1506

    Article  CAS  PubMed  Google Scholar 

  • Rooney, A. G., Carson, A., & Grant, R. (2011). Depression in cerebral glioma patients: A systematic review of observational studies. Journal of the National Cancer Institute, 103(1), 61–76

    Article  PubMed  Google Scholar 

  • Schroeder, F. A., Lewis, M. C., Fass, D. M., Wagner, F. F., Zhang, Y.-L., Hennig, K. M., Gale, J., Zhao, W.-N., Reis, S., & Barker, D. D. (2013). A selective HDAC 1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behavior in two mood-related tests. PLoS ONE, 8(8), e71323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo, Y. J., Kang, Y., Muench, L., Reid, A., Caesar, S., Jean, L., Wagner, F., Holson, E., Haggarty, S. J., & Weiss, P. (2014). Image-guided synthesis reveals potent blood-brain barrier permeable histone deacetylase inhibitors. ACS Chemical Neuroscience, 5(7), 588–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahbazian, M. D., & Grunstein, M. (2007). Functions of site-specific histone acetylation and deacetylation. Annual Review of Biochemistry, 76, 75–100

    Article  CAS  PubMed  Google Scholar 

  • She, A., Kurtser, I., Reis, S. A., Hennig, K., Lai, J., Lang, A., Zhao, W.-N., Mazitschek, R., Dickerson, B. C., & Herz, J. (2017). Selectivity and kinetic requirements of HDAC inhibitors as progranulin enhancers for treating frontotemporal dementia. Cell Chemical Biology, 24(7), 892–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shim, H., Wei, L., Holder, C. A., Guo, Y., Hu, X. P., Miller, A. H., & Olson, J. J. (2014). Use of high-resolution volumetric MR spectroscopic imaging in assessing treatment response of glioblastoma to an HDAC inhibitor. American Journal of Roentgenology, 203(2), W158–W165

    Article  PubMed  Google Scholar 

  • Sukumari-Ramesh, S., Alleyne, C. H., & Dhandapani, K. M. (2016). The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) confers acute neuroprotection after intracerebral hemorrhage in mice. Translational Stroke Research, 7(2), 141–148

    Article  CAS  PubMed  Google Scholar 

  • Suraweera, A., O’Byrne, K. J., & Richard, D. J. (2018). Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Frontiers in Oncology, 8, 92

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka, M., Levy, J., Terada, M., Breslow, R., Rifkind, R. A., & Marks, P. A. (1975). Induction of erythroid differentiation in murine virus infected eythroleukemia cells by highly polar compounds. Proceedings of the National Academy of Sciences, 72(3), 1003–1006

    Article  CAS  Google Scholar 

  • Tsankova, N. M., Berton, O., Renthal, W., Kumar, A., Neve, R. L., & Nestler, E. J. (2006). Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neuroscience, 9(4), 519

    Article  CAS  PubMed  Google Scholar 

  • Uchida, S., Hara, K., Kobayashi, A., Otsuki, K., Yamagata, H., Hobara, T., Suzuki, T., Miyata, N., & Watanabe, Y. (2011). Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron, 69(2), 359–372

    Article  CAS  PubMed  Google Scholar 

  • Ugur, H. C., Ramakrishna, N., Bello, L., Menon, L. G., Kim, S.-K., Black, P. M., & Carroll, R. S. (2007). Continuous intracranial administration of suberoylanilide hydroxamic acid (SAHA) inhibits tumor growth in an orthotopic glioma model. Journal of Neuro-Oncology, 83(3), 267–275

    Article  CAS  PubMed  Google Scholar 

  • VanderMolen, K. M., McCulloch, W., Pearce, C. J., & Oberlies, N. H. (2011). Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): A natural product recently approved for cutaneous T-cell lymphoma. The Journal of Antibiotics, 64(8), 525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Tu, S., Steffen, D., & Xiong, M. P. (2014). Iron complexation to histone deacetylase inhibitors SAHA and LAQ824 in PEGylated liposomes can considerably improve pharmacokinetics in rats. Journal of Pharmacy & Pharmaceutical Sciences, 17(4), 583

    Article  Google Scholar 

  • Wash, P. L., Hoffman, T. Z., Wiley, B. M., Bonnefous, C., Smith, N. D., Sertic, M. S., Lawrence, C. M., Symons, K. T., Nguyen, P.-M., & Lustig, K. D. (2008). α-Mercaptoketone based histone deacetylase inhibitors. Bioorganic & Medicinal Chemistry Letters, 18(24), 6482–6485

    Article  CAS  Google Scholar 

  • Wei, L., Hong, S., Yoon, Y., Hwang, S. N., Park, J. C., Zhang, Z., Olson, J. J., Hu, X. P., & Shim, H. (2012). Early prediction of response to Vorinostat in an orthotopic rat glioma model. NMR in Biomedicine, 25(9), 1104–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, J., Shi, J., Zhang, J., & Zhang, Y. (2018). Vorinostat: a histone deacetylases (HDAC) inhibitor ameliorates traumatic brain injury by inducing iNOS/Nrf2/ARE pathway. Folia Neuropathologica, 56, 179–186

    Article  PubMed  Google Scholar 

  • Yang, C., Rahimpour, S., Lu, J., Pacak, K., Ikejiri, B., Brady, R. O., & Zhuang, Z. (2013). Histone deacetylase inhibitors increase glucocerebrosidase activity in Gaucher disease by modulation of molecular chaperones. Proceedings of the National Academy of Sciences, 110(3), 966–971

    Article  CAS  Google Scholar 

  • Yin, D., Ong, J. M., Hu, J., Desmond, J. C., Kawamata, N., Konda, B. M., Black, K. L., & Koeffler, H. P. (2007). Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor: Effects on gene expression and growth of glioma cells in vitro and in vivo. Clinical Cancer Research, 13(3), 1045–1052

    Article  CAS  PubMed  Google Scholar 

  • Yu, Q., Feng, N., Hu, Y., Luo, F., Zhao, W., Zhao, W., Liu, Z., Li, M., Xu, L., & Wu, L. (2019). Suberoylanilide hydroxamic acid (SAHA) alleviates the learning and memory impairment in rat offspring caused by maternal sevoflurane exposure during late gestation. The Journal of Toxicological Sciences, 44(3), 177–189

    Article  CAS  PubMed  Google Scholar 

  • Zagni, C., Floresta, G., Monciino, G., & Rescifina, A. (2017). The search for potent, small-molecule HDACIs in cancer treatment: A decade after vorinostat. Medicinal Research Reviews, 37(6), 1373–1428

    Article  PubMed  Google Scholar 

  • Ziemka-Nalecz, M., Jaworska, J., Sypecka, J., & Zalewska, T. (2018). Histone deacetylase inhibitors: A therapeutic key in neurological disorders? Journal of Neuropathology & Experimental Neurology, 77(10), 855–870

    Article  CAS  Google Scholar 

  • Zierfuss, B., Weinhofer, I., Kühl, J. S., Köhler, W., Bley, A., Zauner, K., Binder, J., Martinović, K., Seiser, C., & Hertzberg, C. (2020). Vorinostat in the acute neuroinflammatory form of X-linked adrenoleukodystrophy. Annals of Clinical and Translational Neurology, 7, 639–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was jointly supported by CSIR-Indian Institute of Chemical Technology, Hyderabad, and Amrita Vishwa Vidyapeetham, Kochi. IICT communication number generated by KIM division, CSIR-IICT [IICT/Pubs./2020/244], for this manuscript is duly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

AKV and PS involved in conceptualization, data curation, formal analysis, funding acquisition, and writing–reviewing and editing. SC participated in formal analysis, funding acquisition, supervision, and writing—review and editing.

Corresponding authors

Correspondence to Athira K. V. or Sumana Chakravarty.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athira, K.V., Sadanandan, P. & Chakravarty, S. Repurposing Vorinostat for the Treatment of Disorders Affecting Brain. Neuromol Med 23, 449–465 (2021). https://doi.org/10.1007/s12017-021-08660-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-021-08660-4

Keywords

Navigation