Skip to main content
Log in

Increased 5-Methylcytosine and Decreased 5-Hydroxymethylcytosine Levels are Associated with Reduced Striatal A2AR Levels in Huntington’s Disease

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Adenosine A2A receptor (A2AR) is a G-protein-coupled receptor highly expressed in basal ganglia. Its expression levels are severely reduced in Huntington’s disease (HD), and several pharmacological therapies have shown its implication in this neurodegenerative disorder. The main goal of this study was to gain insight into the molecular mechanisms that regulate A2AR gene (ADORA2A) expression in HD. Based on previous data reported by our group, we measured the methylcytosine (5mC) and hydroxymethylcytosine (5hmC) content in the 5′UTR region of ADORA2A in the putamen of HD patients and in the striatum of R6/1 and R6/2 mice at late stages of the disease. In this genomic region, 5mC and 5hmC remained unchanged in both mice strains, although low striatal A2AR levels were associated with reduced 5mC levels in 30-week-old R6/1 mice and reduced 5hmC levels in 12-week-old R6/2 mice in exon m2. In order to analyze when this mechanism appears during the progression of the disease, a time course for A2AR protein levels was carried out in R6/1 mice striatum (8, 12, and 20 weeks of age). A2AR levels were reduced from 12 weeks of age onwards, and this downregulation was concomitant with reduced 5hmC levels in the 5′UTR region of ADORA2A. Interestingly, increased 5mC levels and reduced 5hmC were found in the 5′UTR region of ADORA2A in the putamen of HD patients with respect to age-matched controls. Therefore, an altered DNA methylation pattern in ADORA2A seems to play a role in the pathologically decreased A2AR expression levels found in HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Assaife-Lopes, N., Sousa, V. C., Pereira, D. B., Ribeiro, J. A., Chao, M. V., & Sebastião, A. M. (2010). Activation of adenosine A2A receptors induces TrkB translocation and increases BDNF-mediated phospho-TrkB localization in lipid rafts: Implications for neuromodulation. The Journal of Neuroscience, 30(25), 8468–8480.

    Article  PubMed  CAS  Google Scholar 

  • Bañez-Coronel, M., Porta, S., Kagerbauer, B., Mateu-Huertas, E., Pantano, L., Ferrer, I., et al. (2012). A pathogenic mechanism in Huntington’s disease involves small CAG-repeated RNAs with neurotoxic activity. PLoS Genetics, 8(2), e1002481.

    Article  PubMed  Google Scholar 

  • Barrachina, M., & Ferrer, I. (2009). DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain. Journal of Neuropathology and Experimental Neurology, 68(8), 880–891.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, A., Zilles, K., Matusch, A., Holzmann, C., Riess, O., & von Hörsten, S. (2005). Regional and subtype selective changes of neurotransmitter receptor density in a rat transgenic for the Huntington’s disease mutation. Journal of Neurochemistry, 94(3), 639–650.

    Article  PubMed  CAS  Google Scholar 

  • Blum, D., Galas, M. C., Pintor, A., Brouillet, E., Ledent, C., Muller, C. E., et al. (2003). A dual role of adenosine A2A receptors in 3-nitropropionic acid-induced striatal lesions: Implications for the neuroprotective potential of A2A antagonists. The Journal of Neuroscience, 23(12), 5361–5369.

    PubMed  CAS  Google Scholar 

  • Brohede, J., Rinde, M., Winblad, B., & Graff, C. (2010). A DNA methylation study of the amyloid precursor protein gene in several brain regions from patients with familial Alzheimer disease. Journal of Neurogenetics, 24(4), 179–181.

    Article  PubMed  CAS  Google Scholar 

  • Buira, S. P., Albasanz, J. L., Dentesano, G., Moreno, J., Martín, M., Ferrer, I., et al. (2010a). DNA methylation regulates adenosine A(2A) receptor cell surface expression levels. Journal of Neurochemistry, 112(5), 1273–1285.

    Article  PubMed  CAS  Google Scholar 

  • Buira, S. P., Dentesano, G., Albasanz, J. L., Moreno, J., Martín, M., Ferrer, I., et al. (2010b). DNA methylation and Yin Yang-1 repress adenosine A2A receptor levels in human brain. Journal of Neurochemistry, 115(1), 283–295.

    Article  PubMed  CAS  Google Scholar 

  • Calon, F., Dridi, M., Hornykiewicz, O., Bédard, P. J., Rajput, A. H., & Di Paolo, T. (2004). Increased adenosine A2A receptors in the brain of Parkinson’s disease patients with dyskinesias. Brain, 127(Pt 5), 1075–1084.

    Article  PubMed  Google Scholar 

  • Cha, J. H., Frey, A. S., Alsdorf, S. A., Kerner, J. A., Kosinski, C. M., Mangiarini, L., et al. (1999). Altered neurotransmitter receptor expression in transgenic mouse models of Huntington’s disease. Philosophical Transactions of the Royal Society of London. Series B, Biological Science, 354(1386), 981–989.

    Article  CAS  Google Scholar 

  • Chen-Plotkin, A. S., Sadri-Vakili, G., Yohrling, G. J., Braveman, M. W., Benn, C. L., Glajch, K. E., et al. (2006). Decreased association of the transcription factor Sp1 with genes downregulated in Huntington’s disease. Neurobiology of Disease, 22(2), 233–241.

    Article  PubMed  CAS  Google Scholar 

  • Chiang, M. C., Chen, H. M., Lai, H. L., Chen, H. W., Chou, S. Y., Chen, C. M., et al. (2009). The A2A adenosine receptor rescues the urea cycle deficiency of Huntington’s disease by enhancing the activity of the ubiquitin-proteasome system. Human Molecular Genetics, 18(16), 2929–2942.

    Article  PubMed  CAS  Google Scholar 

  • Chiang, M. C., Lee, Y. C., Huang, C. L., & Chern, Y. (2005). cAMP-response element-binding protein contributes to suppression of the A2A adenosine receptor promoter by mutant Huntingtin with expanded polyglutamine residues. The Journal of Biological Chemistry, 280(14), 14331–14340.

    Article  PubMed  CAS  Google Scholar 

  • Choi, Y. J., Kim, S. I., Lee, J. W., Kwon, Y. S., Lee, H. J., Kim, S. S., et al. (2012). Suppression of aggregate formation of mutant huntingtin potentiates CREB-binding protein sequestration and apoptotic cell death. Molecular and Cellular Neurosciences, 49(2), 127–137.

    Article  PubMed  CAS  Google Scholar 

  • Cong, S. Y., Pepers, B. A., Evert, B. O., Rubinsztein, D. C., Roos, R. A., van Ommen, G. J., et al. (2005). Mutant huntingtin represses CBP, but not p300, by binding and protein degradation. Molecular and Cellular Neurosciences, 30(4), 560–571.

    PubMed  CAS  Google Scholar 

  • de Boni, L., Tierling, S., Roeber, S., Walter, J., Giese, A., & Kretzschmar, H. A. (2011). Next-generation sequencing reveals regional differences of the α-synuclein methylation state independent of Lewy body disease. NeuroMolecular Medicine, 13(4), 310–320.

    Article  PubMed  CAS  Google Scholar 

  • Deckert, J., Brenner, M., Durany, N., Zöchling, R., Paulus, W., Ransmayr, G., et al. (2003). Up-regulation of striatal adenosine A(2A) receptors in schizophrenia. NeuroReport, 14(3), 313–316.

    Article  PubMed  CAS  Google Scholar 

  • Dhaenens, C. M., Burnouf, S., Simonin, C., Van Brussel, E., Duhamel, A., Defebvre, L., et al. (2009). A genetic variation in the ADORA2A gene modifies age at onset in Huntington’s disease. Neurobiology of Disease, 35(3), 474–476.

    Article  PubMed  CAS  Google Scholar 

  • Feng, J., Zhou, Y., Campbell, S. L., Le, T., Li, E., Sweatt, J. D., et al. (2010). Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nature Neuroscience, 13(4), 423–430.

    Article  PubMed  CAS  Google Scholar 

  • Ferrer, I., Goutan, E., Marín, C., Rey, M. J., & Ribalta, T. (2000). Brain-derived neurotrophic factor in Huntington disease. Brain Research, 866(1–2), 257–261.

    Article  PubMed  CAS  Google Scholar 

  • Ferrer, I., Martinez, A., Boluda, S., Parchi, P., & Barrachina, M. (2008). Brain banks: Benefits, limitations and cautions concerning the use of post-mortem brain tissue for molecular studies. Cell and Tissue Banking, 9(3), 181–194.

    Article  PubMed  CAS  Google Scholar 

  • Fredholm, B. B., Ijzerman, A. P., Jacobson, K. A., Klotz, K. N., & Linden, J. (2001). International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacological Reviews, 53(4), 527–552.

    PubMed  CAS  Google Scholar 

  • Gianfriddo, M., Melani, A., Turchi, D., Giovannini, M. G., & Pedata, F. (2004). Adenosine and glutamate extracellular concentrations and mitogen-activated protein kinases in the striatum of Huntington transgenic mice. Selective antagonism of adenosine A2A receptors reduces transmitter outflow. Neurobiology of Disease, 17(1), 77–88.

    Article  PubMed  CAS  Google Scholar 

  • Ginés, S., Bosch, M., Marco, S., Gavaldà, N., Díaz-Hernández, M., Lucas, J. J., et al. (2006). Reduced expression of the TrkB receptor in Huntington’s disease mouse models and in human brain. The European Journal of Neuroscience, 23(3), 649–658.

    Article  PubMed  Google Scholar 

  • Giralt, A., Saavedra, A., Carreton, O., Xifro, X., Alberch, J., & Perez-Navarro, E. (2011). Increased PKA signaling disrupts recognition memory and spatial memory: Role in Huntington’s disease. Human Molecular Genetics, 20(21), 4232–4247.

    Article  PubMed  CAS  Google Scholar 

  • Glass, M., Dragunow, M., & Faull, R. L. (2000). The pattern of neurodegeneration in Huntington’s disease: A comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience, 97(3), 505–519.

    Article  PubMed  CAS  Google Scholar 

  • Globisch, D., Münzel, M., Müller, M., Michalakis, S., Wagner, M., Koch, S., et al. (2010). Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS ONE, 5(12), e15367.

    Article  PubMed  CAS  Google Scholar 

  • Guo, J. U., Ma, D. K., Mo, H., Ball, M. P., Jang, M. H., Bonaguidi, M. A., et al. (2011a). Neuronal activity modifies the DNA methylation landscape in the adult brain. Nature Neuroscience, 14(10), 1345–1351.

    Article  PubMed  CAS  Google Scholar 

  • Guo, J. U., Su, Y., Zhong, C., Ming, G. L., & Song, H. (2011b). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145(3), 423–434.

    Article  PubMed  CAS  Google Scholar 

  • Hodges, A., Strand, A. D., Aragaki, A. K., Kuhn, A., Sengstag, T., Hughes, G., et al. (2006). Regional and cellular gene expression changes in human Huntington’s disease brain. Human Molecular Genetics, 15(6), 965–977.

    Article  PubMed  CAS  Google Scholar 

  • Huang, N. K., Lin, J. H., Lin, J. T., Lin, C. I., Liu, E. M., Lin, C. J., et al. (2011). A new drug design targeting the adenosinergic system for Huntington’s disease. PLoS ONE, 6(6), e20934.

    Article  PubMed  CAS  Google Scholar 

  • Huang, H. S., Matevossian, A., Jiang, Y., & Akbarian, S. (2006). Chromatin immunoprecipitation in postmortem brain. Journal of Neuroscience Methods, 156(1–2), 284–292.

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata, K., Ogi, N., Hayakawa, N., Oda, K., Nagaoka, T., Toyama, H., et al. (2002). Adenosine A2A receptor imaging with [11C]KF18446 PET in the rat brain after quinolinic acid lesion: comparison with the dopamine receptor imaging. Annals of Nuclear Medicine, 16(7), 467–475.

    Article  PubMed  CAS  Google Scholar 

  • Jin, S. G., Kadam, S., & Pfeifer, G. P. (2010). Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Research, 38(11), e125.

    Article  PubMed  Google Scholar 

  • Jin, S. G., Wu, X., Li, A. X., & Pfeifer, G. P. (2011). Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Research, 39(12), 5015–5024.

    Article  PubMed  CAS  Google Scholar 

  • Jones, P. A. (2012). Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nature Reviews Genetics, 13(7), 484–492.

    Article  PubMed  CAS  Google Scholar 

  • Jowaed, A., Schmitt, I., Kaut, O., & Wüllner, U. (2010). Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains. The Journal of Neuroscience, 30(18), 6355–6359.

    Article  PubMed  CAS  Google Scholar 

  • Khare, T., Pai, S., Koncevicius, K., Pal, M., Kriukiene, E., Liutkeviciute, Z., et al. (2012). 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary. Nature Structural & Molecular Biology, 19(10), 1037–1043.

    Article  CAS  Google Scholar 

  • Kriaucionis, S., & Heintz, N. (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science, 324(5929), 929–930.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, A., Goldstein, D. R., Hodges, A., Strand, A. D., Sengstag, T., Kooperberg, C., et al. (2007). Mutant huntingtin’s effects on striatal gene expression in mice recapitulate changes observed in human Huntington’s disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. Human Molecular Genetics, 16(15), 1845–1861.

    Article  PubMed  CAS  Google Scholar 

  • Li, S. H., Cheng, A. L., Zhou, H., Lam, S., Rao, M., Li, H., et al. (2002). Interaction of Huntington disease protein with transcriptional activator Sp1. Molecular and Cellular Biology, 22(5), 1277–1287.

    Article  PubMed  CAS  Google Scholar 

  • London, E. D., Yamamura, H. I., Bird, E. D., & Coyle, J. T. (1981). Decreased receptor-binding sites for kainic acid in brains of patients with Huntington’s disease. Biological Psychiatry, 16(2), 155–162.

    PubMed  CAS  Google Scholar 

  • Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington, C., et al. (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 87(3), 493–506.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Mir, M. I., Probst, A., & Palacios, J. M. (1991). Adenosine A2 receptors: Selective localization in the human basal ganglia and alterations with disease. Neuroscience, 42(3), 697–706.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, L., Takuma, H., Tamaoka, A., Kurisaki, H., Date, H., Tsuji, S., et al. (2010). CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson’s disease. PLoS ONE, 5(11), e15522.

    Article  PubMed  Google Scholar 

  • Mievis, S., Blum, D., & Ledent, C. (2011). A2A receptor knockout worsens survival and motor behaviour in a transgenic mouse model of Huntington’s disease. Neurobiology of Disease, 41(2), 570–576.

    Article  PubMed  CAS  Google Scholar 

  • Miller, C. A., Gavin, C. F., White, J. A., Parrish, R. R., Honasoge, A., Yancey, C. R., et al. (2010). Cortical DNA methylation maintains remote memory. Nature Neuroscience, 13(6), 664–666.

    Article  PubMed  CAS  Google Scholar 

  • Miller, C. A., & Sweatt, J. D. (2007). Covalent modification of DNA regulates memory formation. Neuron, 53(6), 857–869.

    Article  PubMed  CAS  Google Scholar 

  • Mishina, M., Ishiwata, K., Naganawa, M., Kimura, Y., Kitamura, S., Suzuki, M., et al. (2011). Adenosine A(2A) receptors measured with [C]TMSX PET in the striata of Parkinson’s disease patients. PLoS ONE, 6(2), e17338.

    Article  PubMed  CAS  Google Scholar 

  • Münzel, M., Globisch, D., Brückl, T., Wagner, M., Welzmiller, V., Michalakis, S., et al. (2010). Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angewandte Chemie (International ed. in English), 49(31), 5375–5377.

    Article  Google Scholar 

  • Münzel, M., Globisch, D., & Carell, T. (2011). 5-Hydroxymethylcytosine, the sixth base of the genome. Angewandte Chemie (International ed. in English), 50(29), 6460–6468.

    Article  Google Scholar 

  • Nucifora, F. C, Jr, Sasaki, M., Peters, M. F., Huang, H., Cooper, J. K., Yamada, M., et al. (2001). Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science, 291(5512), 2423–2428.

    Article  PubMed  CAS  Google Scholar 

  • Orrú, M., Zanoveli, J. M., Quiroz, C., Nguyen, H. P., Guitart, X., & Ferré, S. (2011). Functional changes in postsynaptic adenosine A(2A) receptors during early stages of a rat model of Huntington disease. Experimental Neurology, 232(1), 76–80.

    Article  PubMed  Google Scholar 

  • Penney, J. B, Jr, & Young, A. B. (1982). Quantitative autoradiography of neurotransmitter receptors in Huntington disease. Neurology, 32(12), 1391–1395.

    Article  PubMed  Google Scholar 

  • Pieper, H. C., Evert, B. O., Kaut, O., Riederer, P. F., Waha, A., & Wüllner, U. (2008). Different methylation of the TNF-alpha promoter in cortex and substantia nigra: Implications for selective neuronal vulnerability. Neurobiology of Disease, 32(3), 521–527.

    Article  PubMed  CAS  Google Scholar 

  • Pietrzak, M., Rempala, G., Nelson, P. T., Zheng, J. J., & Hetman, M. (2011). Epigenetic silencing of nucleolar rRNA genes in Alzheimer’s disease. PLoS ONE, 6(7), e22585.

    Article  PubMed  CAS  Google Scholar 

  • Popoli, P., Blum, D., Domenici, M. R., Burnouf, S., & Chern, Y. (2008). A critical evaluation of adenosine A2A receptors as potentially “druggable” targets in Huntington’s disease. Current Pharmaceutical Design, 14(15), 1500–1511.

    Article  PubMed  CAS  Google Scholar 

  • Popoli, P., Pintor, A., Domenici, M. R., Frank, C., Tebano, M. T., Pèzzola, A., et al. (2002). Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: Possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. The Journal of Neuroscience, 22(5), 1967–1975.

    PubMed  CAS  Google Scholar 

  • Reiner, A., Albin, R. L., Anderson, K. D., D’Amato, C. J., Penney, J. B., & Young, A. B. (1988). Differential loss of striatal projection neurons in Huntington disease. Proceedings of the National Academy of Sciences of the United States of America, 85(15), 5733–5737.

    Article  PubMed  CAS  Google Scholar 

  • Richfield, E. K., O’Brien, C. F., Eskin, T., & Shoulson, I. (1991). Heterogeneous dopamine receptor changes in early and late Huntington’s disease. Neuroscience Letters, 132(1), 121–126.

    Article  PubMed  CAS  Google Scholar 

  • Saavedra, A., Garcia-Martinez, J. M., Xifro, X., Giralt, A., Torres-Peraza, J. F., Canals, J. M., et al. (2010). PH domain leucine-rich repeat protein phosphatase 1 contributes to maintain the activation of the PI3 K/Akt pro-survival pathway in Huntington’s disease striatum. Cell Death and Differentiation, 17(2), 324–335.

    Article  PubMed  CAS  Google Scholar 

  • Schiffmann, S. N., Fisone, G., Moresco, R., Cunha, R. A., & Ferré, S. (2007). Adenosine A2A receptors and basal ganglia physiology. Progress in Neurobiology, 83(5), 277–292.

    Article  PubMed  CAS  Google Scholar 

  • Song, C. X., Szulwach, K. E., Fu, Y., Dai, Q., Yi, C., Li, X., et al. (2011). Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nature Biotechnology, 29(1), 68–72.

    Article  PubMed  CAS  Google Scholar 

  • Steffan, J. S., Kazantsev, A., Spasic-Boskovic, O., Greenwald, M., Zhu, Y. Z., Gohler, H., et al. (2000). The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proceeding of the National Academy of Sciences of the United States of America, 97(12), 6763–6768.

    Article  CAS  Google Scholar 

  • Sunahori, K., Juang, Y. T., & Tsokos, G. C. (2009). Methylation status of CpG islands flanking a cAMP response element motif on the protein phosphatase 2Ac alpha promoter determines CREB binding and activity. Journal of Immunology, 182(3), 1500–1508.

    CAS  Google Scholar 

  • Suzuki, M. M., & Bird, A. (2008). DNA methylation landscapes: Provocative insights from epigenomics. Nature Review Genetics, 9(6), 465–476.

    Article  CAS  Google Scholar 

  • Szulwach, K. E., Li, X., Li, Y., Song, C. X., Wu, H., Dai, Q., et al. (2011). 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nature Neuroscience, 14(12), 1607–1616.

    Article  PubMed  CAS  Google Scholar 

  • Taherzadeh-Fard, E., Saft, C., Wieczorek, S., Epplen, J. T., & Arning, L. (2010). Age at onset in Huntington’s disease: Replication study on the associations of ADORA2A, HAP1 and OGG1. Neurogenetics, 11(4), 435–439.

    Article  PubMed  CAS  Google Scholar 

  • Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., et al. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929), 930–935.

    Article  PubMed  CAS  Google Scholar 

  • Tebano, M. T., Martire, A., Chiodi, V., Ferrante, A., & Popoli, P. (2010). Role of adenosine A(2A) receptors in modulating synaptic functions and brain levels of BDNF: A possible key mechanism in the pathophysiology of Huntington’s disease. ScientificWorldJournal, 10, 1768–1782.

    Article  PubMed  CAS  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group. (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 72(6), 971–983.

    Article  Google Scholar 

  • Valinluck, V., & Sowers, L. C. (2007). Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Research, 67(12), 946–950.

    Article  PubMed  CAS  Google Scholar 

  • Valinluck, V., Tsai, H. H., Rogstad, D. K., Burdzy, A., Bird, A., & Sowers, L. C. (2004). Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Research, 32(14), 4100–4108.

    Article  PubMed  CAS  Google Scholar 

  • Van Ness, P. C., Watkins, A. E., Bergman, M. O., Tourtellotte, W. W., & Olsen, R. W. (1982). Gamma-Aminobutyric acid receptors in normal human brain and Huntington disease. Neurology, 32(1), 63–68.

    Article  PubMed  Google Scholar 

  • Varani, K., Bachoud-Lévi, A. C., Mariotti, C., Tarditi, A., Abbracchio, M. P., Gasperi, V., et al. (2007). Biological abnormalities of peripheral A(2A) receptors in a large representation of polyglutamine disorders and Huntington’s disease stages. Neurobiology of Disease, 27(1), 36–43.

    Article  PubMed  CAS  Google Scholar 

  • Varani, K., Vincenzi, F., Tosi, A., Gessi, S., Casetta, I., Granieri, G., et al. (2010). A2A adenosine receptor overexpression and functionality, as well as TNF-alpha levels, correlate with motor symptoms in Parkinson’s disease. FASEB J, 24(2), 587–598.

    Article  PubMed  CAS  Google Scholar 

  • Vonsattel, J. P. (2008). Huntington disease models and human neuropathology: similarities and differences. Acta Neuropathologica, 115(1), 55–69.

    Article  PubMed  Google Scholar 

  • Vonsattel, J. P., Myers, R. H., Stevens, T. J., Ferrante, R. J., Bird, E. D., & Richardson, E. P, Jr. (1985). Neuropathological classification of Huntington’s disease. Journal of Neuropathology and Experimental Neurology, 44(6), 559–577.

    Article  PubMed  CAS  Google Scholar 

  • Weber, M., Hellmann, I., Stadler, M. B., Ramos, L., Pääbo, S., Rebhan, M., et al. (2007). Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genetics, 39(4), 457–466.

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse, P. J., Trifiletti, R. R., Jones, B. E., Folstein, S., Price, D. L., Snyder, S. H., et al. (1985). Neurotransmitter receptor alterations in Huntington’s disease: autoradiographic and homogenate studies with special reference to benzodiazepine receptor complexes. Annals of Neurology, 18(2), 202–210.

    Article  PubMed  CAS  Google Scholar 

  • Xin, Y., O’Donnell, A. H., Ge, Y., Chanrion, B., Milekic, M., Rosoklija, G., et al. (2011). Role of CpG context and content in evolutionary signatures of brain DNA methylation. Epigenetics, 6(11), 1308–1318.

    Article  PubMed  CAS  Google Scholar 

  • Yossifoff, M., Kisliouk, T., & Meiri, N. (2008). Dynamic changes in DNA methylation during thermal control establishment affect CREB binding to the brain-derived neurotrophic factor promoter. The European Journal of Neuroscience, 28(11), 2267–2277.

    Article  PubMed  Google Scholar 

  • Young, A. B., Greenamyre, J. T., Hollingsworth, Z., Albin, R., D’Amato, C., Shoulson, I., et al. (1988). NMDA receptor losses in putamen from patients with Huntington’s disease. Science, 241(4868), 981–983.

    Article  PubMed  CAS  Google Scholar 

  • Yu, L., Frith, M. C., Suzuki, Y., Peterfreund, R. A., Gearan, T., Sugano, S., et al. (2004). Characterization of genomic organization of the adenosine A2A receptor gene by molecular and bioinformatics analyses. Brain Research, 2004(1–2), 156–173.

    Article  Google Scholar 

  • Yu, Z. X., Li, S. H., Nguyen, H. P., & Li, X. J. (2002). Huntingtin inclusions do not deplete polyglutamine-containing transcription factors in HD mice. Human Molecular Genetics, 11(8), 905–914.

    Article  PubMed  CAS  Google Scholar 

  • Zuccato, C., Marullo, M., Conforti, P., MacDonald, M. E., Tartari, M., & Cattaneo, E. (2008). Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington’s disease. Brain Pathology, 18(2), 225–238.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Ellen Gelpí for providing HD cases (Neurological Tissue Bank, University of Barcelona—Hospital Clínic de Barcelona) and to Dr. Laura de Jorge (Molecular Genetic Diagnosis Center, IDIBELL) for technical advice in CAG repeat determination. We thank T. Yohannan for editorial assistance. This work was supported by the Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III [CP08/00095 to M.B., PI10/01072 to E.P.N.]; and La Fundació La Marató de TV3 [090330 to M.B., 092331 to M.M.]. I.V.M. is the recipient of an IDIBELL predoctoral fellowship and S.T. is a fellow of the Generalitat de Catalunya (AGAUR ST06914).

Conflict of Interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Barrachina.

Additional information

Izaskun Villar-Menéndez and Marta Blanch: contributed equally.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villar-Menéndez, I., Blanch, M., Tyebji, S. et al. Increased 5-Methylcytosine and Decreased 5-Hydroxymethylcytosine Levels are Associated with Reduced Striatal A2AR Levels in Huntington’s Disease. Neuromol Med 15, 295–309 (2013). https://doi.org/10.1007/s12017-013-8219-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-013-8219-0

Keywords

Navigation