Skip to main content
Log in

An Efficient Design of Parallel and Serial Shift Registers Based on Quantum-Dot Cellular Automata

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum-dot cellular automata (QCA) is considered as rising nanotechnology, which offers computer calculations at the stage of nano by employing molecular modules as calculational modules. Employing this engineering leads to lower splinter region along less power dissipation and can remove the spatial constraints of Complementary Metal Oxide Semiconductor (CMOS) procedure. Shift registers generally utilize currents in a smart scheme. Therefore, modeling these constructions, along with higher consistency and strength, is significant. This article uses a robust dual-edge triggered QCA-based D flip flops. Efficient parallel-in-parallel-out (PIPO) and serial input-serial output (SISO) QCA-based shift registers are also introduced. The simulation and functionality of the suggested constructions have been verified with QCA designer, and their credit is also verified. Presented architectures contain proper QCA execution and provide the minimum difficulty and occupy an area rather than previous constructions. These circuits achieve a noticeable improvement in cell number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Farhangian, H., Abrishamifar, S.M., Palizian, M., Janghorban Lariche, M., Baghban, A.: The application of nanofluids for recovery of asphaltenic oil. Pet. Sci. Technol. 36(4), 287–292 (2018)

    Article  Google Scholar 

  2. Hosseini, M., Kahkha, M.R.R., Fakhri, A., Tahami, S., Lariche, M.J.: Degradation of macrolide antibiotics via sono or photo coupled with Fenton methods in the presence of ZnS quantum dots decorated SnO2 nanosheets. J. Photochem. Photobiol. B Biol. 185, 24–31 (2018)

    Article  Google Scholar 

  3. M. J. Lariche et al., "Developing supervised models for estimating methylene blue removal by silver nanoparticles," Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp. 1–8, 2019

  4. Zuo, X., Behradfar, K., Liu, J.-B., Lariche, M.J., Najafi, M.: Theoretical study of ability of boron nitride nanocone to oxidation of sulfur monoxide. Acta Chim. Slov. 65(2), 296–302 (2018)

    Article  Google Scholar 

  5. Afrooz, S., Navimipour, N.J.: Memory designing using quantum-dot cellular automata: systematic literature review, classification and current trends. Journal of Circuits, Systems and Computers. 26(12), 1730004 (2017)

    Article  Google Scholar 

  6. Fam, S.R., Navimipour, N.J.: Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw. Commun. 37(1), 120–130 (2019)

    Article  Google Scholar 

  7. Gadim, M.R., Navimipour, N.J.: A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst. Technol. 24(2), 1295–1305 (2018)

    Article  Google Scholar 

  8. Gadim, M.R., Navimipour, N.J.: Quantum-dot cellular automata in designing the arithmetic and logic unit: systematic literature review, classification and current trends. Journal of Circuits, Systems and Computers. 27(10), 1830005 (2018)

    Article  Google Scholar 

  9. A. Sandhu and S. Gupta, "Performance Evaluation of an Efficient Five-Input Majority Gate Design in QCA Nanotechnology," Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2019/12/16 2019

  10. Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: A symmetric quantum-dot cellular automata design for 5-input majority gate. J. Comput. Electron. 13(3), 701–708 (2014)

    Article  Google Scholar 

  11. Xiao, L.-r., Chen, X.-x., Ying, S.-y.: Design of dual-edge triggered flip-flops based on quantum-dot cellular automata. Journal of Zhejiang University SCIENCE C. 13(5), 385–392 (2012)

    Article  Google Scholar 

  12. Moharrami, E., Navimipour, N.J.: Designing nanoscale counter using reversible gate based on quantum-dot cellular automata. Int. J. Theor. Phys. 57(4), 1060–1081 (2018)

    Article  MathSciNet  Google Scholar 

  13. Afrooz, S., Navimipour, N.J.: Fault-tolerant Design of a Shift Register at the nanoscale based on quantum-dot cellular automata. Int. J. Theor. Phys. 57(9), 2598–2614 (2018)

    Article  Google Scholar 

  14. Yang, X., Cai, L., Zhao, X., Zhang, N.: Design and simulation of sequential circuits in quantum-dot cellular automata: falling edge-triggered flip-flop and counter study. Microelectron. J. 41(1), 56–63 (2010)

    Article  Google Scholar 

  15. Chaves, J.F., Ribeiro, M.A., Silva, L.M., de Assis, L.M., Torres, M.S., Neto, O.P.V.: Energy efficient QCA circuits design: simulating and analyzing partially reversible pipelines. J. Comput. Electron. 17(1), 479–489 (2018)

    Article  Google Scholar 

  16. S. Babaie, A. Sadoghifar, and A. N. Bahar, "Design of an Efficient Multilayer Arithmetic Logic Unit in Quantum-Dot Cellular Automata (QCA)," IEEE Transactions on Circuits and Systems II: Express Briefs, 2018

  17. Seyedi, S., Darbandi, M., Navimipour, N.J.: Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology. Optik. 185, 827–837 (2019)

    Article  ADS  Google Scholar 

  18. Seyedi, S., Navimipour, N.J.: An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik. 158, 243–256 (2018)

    Article  ADS  Google Scholar 

  19. R. Chakrabarty, D. K. Mahato, A. Banerjee, S. Choudhuri, M. Dey, and N. Mandal, "A novel design of flip-flop circuits using quantum dot cellular automata (QCA)," in 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), 2018: IEEE, pp. 408–414

  20. Shamsabadi, A.S., Ghahfarokhi, B.S., Zamanifar, K., Movahedinia, N.: Applying inherent capabilities of quantum-dot cellular automata to design: D flip-flop case study. J. Syst. Archit. 55(3), 180–187 (2009)

    Article  Google Scholar 

  21. Afrooz, S., Navimipour, N.J.: Memory designing using quantum-dot cellular automata: systematic literature review, classification and current trends. Journal of Circuits, Systems and Computers. 26, 1730004 (2017)

    Article  Google Scholar 

  22. Kummamuru, R.K., Orlov, A.O., Ramasubramaniam, R., Lent, C.S., Bernstein, G.H., Snider, G.L.: Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors. IEEE Transactions on electron devices. 50(9), 1906–1913 (2003)

    Article  ADS  Google Scholar 

  23. Zhang, Y., Xie, G., Lv, H.: Dual-edge triggered JK flip-flop with comprehensive analysis in quantum-dot cellular automata. The Journal of Engineering. 2018(7), 354–359 (2018)

    Article  Google Scholar 

  24. Abedi, D., Jaberipur, G.: Decimal full adders specially designed for quantum-dot cellular automata. IEEE Transactions on Circuits and Systems II: Express Briefs. 65(1), 106–110 (2018)

    Article  Google Scholar 

  25. Seyedi, S., Navimipour, N.J.: Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata. Nano communication networks. 16, 1–9 (2018)

    Article  Google Scholar 

  26. S. Seyedi and N. J. Navimipour, "An optimized three-level Design of Decoder Based on Nanoscale quantum-dot cellular automata," Int. J. Theor. Phys., pp. 1–12, 2018

  27. Sherizadeh, R., Navimipour, N.J.: Designing a 2-to-4 decoder on nanoscale based on quantum-dot cellular automata for energy dissipation improving. Optik. 158, 477–489 (2018)

    Article  ADS  Google Scholar 

  28. Divshali, M.N., Rezai, A., Karimi, A.: Towards multilayer QCA SISO shift register based on efficient D-FF circuits. Int. J. Theor. Phys. 57(11), 3326–3339 (2018)

    Article  MathSciNet  Google Scholar 

  29. N. M. Nayeem, M. A. Hossain, L. Jamal, and H. M. H. Babu, "Efficient design of shift registers using reversible logic," in 2009 International Conference on Signal Processing Systems, 2009: IEEE, pp. 474–478

  30. Abutaleb, M.: A novel power-efficient high-speed clock management unit using quantum-dot cellular automata. Journal of Nanoparticle Research. 19(4), 128 (2017)

    Article  ADS  Google Scholar 

  31. B. Sen, M. Goswami, S. Some, and B. K. Sikdar, "Design of sequential circuits in multilayer qca structure," in 2013 International Symposium on Electronic System Design, 2013: IEEE, pp. 21–25

  32. R. Binaei and M. Gholami, "Design of Multiplexer-Based D Flip-Flop with set and reset ability in quantum dot cellular automata nanotechnology," Int. J. Theor. Phys., pp. 1–13, 2018

  33. Zoka, S., Gholami, M.: A novel rising edge triggered resettable D flip-flop using five input majority gate. Microprocess. Microsyst. 61, 327–335 (2018)

    Article  Google Scholar 

  34. Singh, R., Pandey, M.K.: Analysis and implementation of reversible dual edge triggered d flip flop using quantum dot cellular automata. International journal of innovative computing information and control. 14(1), 147–159 (2018)

    Google Scholar 

  35. Das, J.C., De, D.: Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design. Microsyst. Technol. 23(9), 4155–4168 (2017)

    Article  Google Scholar 

  36. T. Sarkar, "Design of D Flip-Flip Using Nano-Technology Based Quantum Cellular Automata," International Journal of Soft Computing and Engineering (IJSCE), 2013

  37. Roshan, M.G., Gholami, M.: Novel D latches and D flip-flops with set and reset ability in QCA nanotechnology using minimum cells and area. Int. J. Theor. Phys. 57(10), 3223–3241 (2018)

    Article  Google Scholar 

  38. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Article  ADS  Google Scholar 

  39. T. Purkayastha, D. De, and T. Chattopadhyay, "Universal Shift Register Implementation Using Quantum Dot Cellular Automata," Ain Shams Engineering Journal, 2016

  40. Bagal, H.A., Soltanabad, Y.N., Dadjuo, M., Wakil, K., Ghadimi, N.: Risk-assessment of photovoltaic-wind-battery-grid based large industrial consumer using information gap decision theory. Sol. Energy. 169, 343–352 (2018)

    Article  ADS  Google Scholar 

  41. Ahadi, A., Ghadimi, N., Mirabbasi, D.: Reliability assessment for components of large scale photovoltaic systems. J. Power Sources. 264, 211–219 (2014)

    Article  ADS  Google Scholar 

  42. Saeedi, M., Moradi, M., Hosseini, M., Emamifar, A., Ghadimi, N.: Robust optimization based optimal chiller loading under cooling demand uncertainty. Appl. Therm. Eng. 148, 1081–1091 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuyan Fan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, S., Khamesinia, M.S. An Efficient Design of Parallel and Serial Shift Registers Based on Quantum-Dot Cellular Automata. Int J Theor Phys 60, 2400–2411 (2021). https://doi.org/10.1007/s10773-020-04558-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04558-2

Keywords

Navigation