Skip to main content

Advertisement

Log in

Low-complexity QCA universal shift register design using multiplexer and D flip-flop based on electronic correlations

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Quantum-dot cellular automata (QCA) represent an alternative technology for implementing various computations and high-performance, low-power consumption digital circuits at nanoscale. Meanwhile, an universal shift register (USR) with guaranteed free position shift and parallel input and transfer of the stored bit value of the register is an essential element in the design of the circuit. Therefore, we propose an USR circuit based on QCA (QUSR) which can be configured by combining the shift register with a multiplexer (Mux) to select the function of the register. In this study, we propose a 2-to-1 Mux based on the electronic correlations between the cells, and then extend this to a 4-to-1 Mux. We also propose a new D flip-flop, and design a shift register by connecting these. Finally, we propose a QUSR with an extremely optimized area and latency, by connecting four 4-to-1 Muxes and a four-bit shift register. The proposed QUSR is highly efficient, in terms of the space, time complexity and energy dissipation. All proposed structures are simulated by QCADesigner to demonstrate the clarity of the motion and efficiency. We also measured and compared the energy dissipation in three tunneling levels by QCAPro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38(2):114–117

    Google Scholar 

  2. Jeon JC (2015) Extendable quantum-dot cellular automata decoding architecture using 5-input majority gate. Int J Control Autom 8(12):107–118

    Article  Google Scholar 

  3. Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4(1):49–57

    Article  Google Scholar 

  4. Sabbaghi-Nadooshan R, Kianpour M (2014) A novel QCA implementation of MUX-based universal shift register. J Comput Electron 13(1):198–210

    Article  MATH  Google Scholar 

  5. Purkayastha T, De D, Chattopadhyay T (2018) Universal shift register implementation using quantum dot cellular automata. Ain Shams Eng J 9:291–310

    Article  Google Scholar 

  6. Ahmad F (2018) An optimal design of QCA based 2n:1/1:2n multiplexer/demultiplexer and its efficient digital logic realization. Microprocess Microsyst 56:64–75

    Article  Google Scholar 

  7. Mardiris VA, Karafyllidis IG (2009) Design and simulation of modular 2 to 1 quantum-dot cellular automata (QCA) multiplexers. Int J Circuit Theory Appl 38(8):771–785

    MATH  Google Scholar 

  8. Hashemi S, Navi K (2012) New robust QCA D flip flop and memory structures. Microelectron J 43(12):929–940

    Article  Google Scholar 

  9. Roohi A, Khademolhosseini H, Sayedsalehi S, Navi K (2011) A novel architecture for quantum-dot cellular automata multiplexer. Int J Comput Sci 8(6):55–60

    Google Scholar 

  10. Sen B, Goswami M, Mazumdar S, Sikdar BK (2015) Towards modular design of reliable quantum-dot cellular automata logic circuit using multiplexers. Comput Electron Eng 45:42–54

    Article  Google Scholar 

  11. Das JC, De DD (2016) Optimized multiplexer design and simulation using quantum dotcellular automata. Indian J Pure Appl Phys 54:802–811

    Google Scholar 

  12. Das JC, De D (2016) Shannon’s expansion theorem-based multiplexer synthesis using QCA. Nanomater Energy 5:53–60

    Article  Google Scholar 

  13. Singh S, Pandey S, Wairya S (2016) Modular design of 2n:1 quantum dot cellular automata multiplexers and its application, via clock zone based crossover. Int J Modern Educ Comput Sci 7:41–52

    Article  Google Scholar 

  14. Mustafa M, Beigh MR (2014) Novel linear feedback shift register design in quantum-dot cellular automata. Indian J Pure Appl Phys 52(3):203–209

    Google Scholar 

  15. You YW, Jeon JC (2017) QCA D flip-flop with high scalability using multilayer structure. Adv Sci Lett 23(10):9841–9846

    Article  Google Scholar 

  16. Jeon JC (2017) Analysis of coplanar QCA decoder module using typical five input majority gate. Adv Sci Lett 23(10):9847–9851

    Article  Google Scholar 

  17. Lee JS, Jeon JC (2017) Design and simulation of novel D flip-flop based sequential logic circuits in QCA. Adv Sci Lett 23(10):10102–10106

    Article  Google Scholar 

  18. Safoev N, Jeon JC (2019) Implementation of high-speed shifting operation in quantum-dot cellular automata technology. Int J Mech Eng Technol 10(2):576–586

    Google Scholar 

  19. Angizi S, Sarmadi S, Sayedsalehi S, Navi K (2015) Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron J 46(1):43–51

    Article  Google Scholar 

  20. Lee JS, Jeon JC (2016) Design of low hardware complexity multiplexer using NAND Gates on quantum-dot cellular automata. Int J Multimed Ubiquitous Eng 11(12):307–318

    Article  Google Scholar 

  21. Makanda K, Jeon JC (2015) Reinforced secure secret sharing for quantum communication. Int Inf Inst 18(10):4289–4296

    Google Scholar 

  22. Jeon JC (2016) Low hardware complexity QCA decoding architecture using inverter chain. Int J Control Autom 9(4):347–358

    Article  Google Scholar 

  23. Jeon JC (2019) Minimized energy consumption based QCA reversible adder. Int J Civ Eng Technol 10(2):702–714

    Google Scholar 

  24. Roohi A, DeMara RF, Khoshavi N (2015) Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron J 46(6):531–542

    Article  Google Scholar 

  25. Erniyazov S, Jeon JC (2019) Carry save adder and carry look ahead adder using inverter chain based coplanar QCA full adder for low energy dissipation. Microelectron Eng 211:37–43

    Article  Google Scholar 

  26. Srivastava S, Asthana A, Bhanja S, Sarkar S (2011) QCAPro-an error power estimation tool for QCA circuit design. In: Proceedings of the IEEE international symposium circuits system. pp 2377–2380

  27. Srivastava S, Sarkar S, Bhanja S (2009) Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans Nanotechnol 8:116–127

    Article  Google Scholar 

  28. Blair EP, Yost E, Lent CS (2010) Power dissipation in clocking wires for clocked molecular quantum-dot cellular automata. J Comput Electron 9:49–55

    Article  Google Scholar 

  29. Erniyazov S, Jeon JC (2019) Low power consumption Quantum-dot cellular automata (QCA) magnitude comparator with single layer wire-crossing technique. Asia Life Sci 18(3):1471–1478

    Google Scholar 

Download references

Acknowledgements

This paper was supported by Kumoh National Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Cheol Jeon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, JC. Low-complexity QCA universal shift register design using multiplexer and D flip-flop based on electronic correlations. J Supercomput 76, 6438–6452 (2020). https://doi.org/10.1007/s11227-019-02962-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-019-02962-y

Keywords

Navigation