Skip to main content
Log in

Novel circuit design of serial–parallel multiplier in quantum-dot cellular automata technology

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The quantum-dot cellular automata (QCA) is a novel technology with greater potential to provide circuits with small size and high speed compared with complementary metal–oxide–semiconductor (CMOS) technology. This paper presents and evaluates a novel serial–parallel QCA multiplier circuit based on a designed efficient full-adder circuit. The designed circuits are simulated using QCADesigner version 2.0.3. The results demonstrate that the proposed circuits have advantages in comparison with other QCA circuits in terms of cell count, area, and cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Rairigh, D.: Limits of CMOS Technology Scaling and Technologies Beyond-CMOS. Institute of Electrical and Electronics Engineers, Inc, Piscataway (2005)

    Google Scholar 

  2. Shafizadeh, M., Rezai, A.: Improved device performance in a CNTFET using La2O3 high-κ dielectrics. J. Comput. Electron. 16(2), 221–227 (2017)

    Article  Google Scholar 

  3. Karimi, A., Rezai, A.: A design methodology to optimize the device performance in CNTFET. ECS J. Solid State Sci. Technol. 6(8), M97–M102 (2017)

    Article  Google Scholar 

  4. Zareiee, M., Mehrad, M.: A reliable nano device with appropriate performance in high temperatures. ECS J. Solid State Sci. Technol. 6(4), M50–M54 (2017)

    Article  Google Scholar 

  5. Zareiee, M.: Modifying buried layers in nano-MOSFET for achieving reliable electrical characteristics. ECS J. Solid State Sci. Technol. 5(10), M113–M117 (2016)

    Article  Google Scholar 

  6. Zareiee, M.: High performance nano device with reduced short channel effects in high temperature applications. ECS J. Solid State Sci. Technol. 6(7), M75–M78 (2017)

    Article  Google Scholar 

  7. Mehrad, M.: Reducing floating body and short channel effects in nano scale transistor: inserted P+ region SOI-MOSFET. ECS J. Solid State Sci. Technol. 5(9), M88–M92 (2016)

    Article  Google Scholar 

  8. Kummamuru, R.K., Orlov, A.O., Ramasubramaniam, R., Lent, C.S., Bernstein, G.H., Snider, G.L.: Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors. IEEE Trans. Electron Devices 50(9), 1906–1913 (2003)

    Article  Google Scholar 

  9. Sen, B., Dutta, M., Mukherjee, R., Nath, R.K., Sinha, A.P., Sikdar, B.K.: Towards the design of hybrid QCA tiles targeting high fault tolerance. J. Comput. Electron. 15(2), 429–445 (2016)

    Article  Google Scholar 

  10. Rashidi, H., Rezai, A., Soltany, S.: High-performance multiplexer architecture for quantum-dot cellular automata. J. Comput. Electron. 15(3), 968–981 (2016)

    Article  Google Scholar 

  11. Rashidi, H., Rezai, A.: Design of novel efficient multiplexer architecture for quantum-dot cellular automata. J. Nano Electron. Phys. 9(1), 1011–1012 (2017)

    Article  Google Scholar 

  12. Porod, W.: Quantum-dot devices and quantum-dot cellular automata. J. Frankl. Inst. 334(5–6), 1147–1175 (1997)

    Article  Google Scholar 

  13. Balali, M., Rezai, A., Balali, H., Rabiei, F., Emadi, S.: A novel design of 5-input majority gate in quantum-dot cellular automata technology. In: 2017 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), pp. 13–16. IEEE (2017)

  14. Cho, H., Swartzlander, E.E.: Adder designs and analyses for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 6(3), 374–383 (2007)

    Article  Google Scholar 

  15. Pudi, V., Sridharan, K.: Efficient design of a hybrid adder in quantum-dot cellular automata. IEEE Trans. Very Large Scale Integr. VLSI Syst. 19(9), 1535–1548 (2011)

    Article  Google Scholar 

  16. Cho, H., Swartzlander, E.E.: Modular design of conditional sum adders using quantum-dot cellular automata. In: Sixth IEEE Conference on Nanotechnology, 2006. IEEE-NANO 2006, pp. 363–366. IEEE (2006)

  17. Cho, H., Swartzlander, E.: Pipelined carry lookahead adder design in quantum-dot cellular automata. In: Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers, pp. 1191–1195. IEEE (2005)

  18. Rashidi, H., Rezai, A.: High-performance full adder architecture in quantum-dot cellular automata. J. Eng. 2017(7), 394–402 (2017)

    Google Scholar 

  19. Balali, M., Rezai, A., Balali, H., Rabiei, F., Emadi, S.: Towards coplanar quantum-dot cellular automata adders based on efficient three-input XOR gate. Results Phys. 7, 1389–1395 (2017)

    Article  Google Scholar 

  20. Mokhtari, D., Rezai, A., Rashidi, H., Rabiei, F., Emadi, S., Karimi, A.: Design of novel efficient full adder architecture for quantum-dot cellular automata technology. Facta Univ. Ser. Electron. Energ. 31(2), 279–285 (2018)

    Article  Google Scholar 

  21. Sen, B., Goswami, M., Mazumdar, S., Sikdar, B.K.: Towards modular design of reliable quantum-dot cellular automata logic circuit using multiplexers. Comput. Electr. Eng. 45, 42–54 (2015)

    Article  Google Scholar 

  22. Cocorullo, G., Corsonello, P., Frustaci, F., Perri, S.: Design of efficient QCA multiplexers. Int. J. Circuit Theory Appl. 44(3), 602–615 (2016)

    Article  Google Scholar 

  23. Cho, H., Swartzlander Jr., E.E.: Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Comput. 58(6), 721–727 (2009)

    Article  MathSciNet  Google Scholar 

  24. Abedi, D., Jaberipur, G.: Coplanar QCA serial adder and multiplier via clock-zone based crossover. In: 2015 18th CSI International Symposium on Computer Architecture and Digital Systems (CADS), pp. 1–4. IEEE (2015)

  25. Pudi, V., Sridharan, K.: Efficient design of Baugh-Wooley multiplier in quantum-dot cellular automata. In: 2013 13th IEEE Conference on Nanotechnology (IEEE-NANO), pp. 702–706. IEEE (2013)

  26. Kim, S.-W., Swartzlander, E.E.: Parallel multipliers for quantum-dot cellular automata. In: Nanotechnology Materials and Devices Conference, 2009. NMDC’09, pp. 68–72. IEEE (2009)

  27. Chudasama, A., Sasamal, T.N.: Implementation of 4 × 4 vedic multiplier using carry save adder in quantum-dot cellular automata. In: 2016 International Conference on Communication and Signal Processing (ICCSP), pp. 1260–1264. IEEE (2016)

  28. Ahmad, F., Bhat, G.M., Khademolhosseini, H., Azimi, S., Angizi, S., Navi, K.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016)

    Article  MathSciNet  Google Scholar 

  29. Tougaw, P.D., Lent, C.S.: Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80(8), 4722–4736 (1996)

    Article  Google Scholar 

  30. Vankamamidi, V., Ottavi, M., Lombardi, F.: Two-dimensional schemes for clocking/timing of QCA circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(1), 34–44 (2008)

    Article  Google Scholar 

  31. Kim, K., Wu, K., Karri, R.: The robust QCA adder designs using composable QCA building blocks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(1), 176–183 (2007)

    Article  Google Scholar 

  32. Angizi, S., Alkaldy, E., Bagherzadeh, N., Navi, K.: Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. J. Low Power Electron. 10(2), 259–271 (2014)

    Article  Google Scholar 

  33. Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 14(3), 497–504 (2015)

    Article  Google Scholar 

  34. Sasamal, T.N., Singh, A.K., Mohan, A.: An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Opt. Int. J. Light Electron Opt. 127(20), 8576–8591 (2016)

    Article  Google Scholar 

  35. Kassa, S.R., Nagaria, R.: A novel design of quantum dot cellular automata 5-input majority gate with some physical proofs. J. Comput. Electron. 15(1), 324–334 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdalhossein Rezai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edrisi Arani, I., Rezai, A. Novel circuit design of serial–parallel multiplier in quantum-dot cellular automata technology. J Comput Electron 17, 1771–1779 (2018). https://doi.org/10.1007/s10825-018-1220-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1220-y

Keywords

Navigation