Skip to main content

Advertisement

Log in

Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

For nano scale logic circuit, device area and power consumption are the major concerns. In this paper, the design of an optimized SISO shift register is explored based on quantum-dot cellular automata (QCA) device. The design is achieved in a single layer. To design the shift register circuit, a new QCA D flip-flop has been proposed. These new D flip-flop has minimum cell count and lower device area over existing designs. The proposed shift register also outperforms the existing designs by reducing cell count and area. The power consumption by the proposed design is carried out that shows the low energy consumption nature of the circuit. Logic gate, QCA cell and device density have been considered to evaluate the circuit. Simulation timing diagram and truth table of the proposed circuits are compared which shows that all the designs are functioning efficiently. Stability under thermal randomness for all the designs are analyzed which shows the steadiness of the designs. The impacts of control input, i.e., clock on the designs are explored. Besides the defects in proposed QCA layouts are also identified and excelled for fault free implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Ahmad F, Mustafa M, Wani NA, Mir FA (2014) A novel idea of pseudo-code generator in quantum-dot cellular automata (QCA). Int J Simul Multisci Des Optim. doi:10.1051/smdo/2013012

    Google Scholar 

  • Arjmand MM, Soryani M, Navi K (2013) Coplanar wire crossing in quantum cellular automata using a ternary cell. IET Circuits Devices Syst 7:263–272. doi:10.1049/iet-cds.2012.0366

    Article  Google Scholar 

  • Das K, De D (2010) Characterization, test and logic synthesis of novel conservative and reversible logic gates for QCA. Int J Nanosci 9:201–214

    Article  Google Scholar 

  • Das K, De D (2011) Characterisation, applicability and defect analysis for tiles nanostructure of quantum dot cellular automata. Mol Simul 37:210–225

    Article  Google Scholar 

  • Das JC, De D (2012) Quantum dot cellular automata based cipher text design for nano communication. Int Conf Raddar Commun Comput (ICRCC-12). doi:10.1109/ICRCC.2012.6450583

    Google Scholar 

  • Das JC, De D (2015a) Reversible binary to grey and grey to binary code converter using QCA. IETE J Res 61:223–229

    Article  Google Scholar 

  • Das JC, De D (2015b) Reversible Comparator Design using Quantum Dot-Cellular Automata. IETE J Res. doi:10.1080/03772063.2015.1088407

    Google Scholar 

  • Das JC, De D (2016a) Shannon’s expansion theorem based multiplexer synthesis using QCA. Nanomater Energy 5:53–60. doi:10.1680/jnaen.15.00008

    Article  Google Scholar 

  • Das JC, De D (2016b) User authentication based on quantum-dot cellular automata using reversible logic for secure nanocommunication. Arab J Sci Eng 41:773–784

    Article  MathSciNet  Google Scholar 

  • Das JC, De D (2016c) Quantum dot-cellular automata based reversible low power parity generator and parity checker design for nanocommunication. Front Inf Technol Electron Eng 17:224–236

    Article  Google Scholar 

  • Das JC, De D (2016d) novel low power reversible binary incrementer design using quantum-dot cellular automata. Microprocess Microsyst 42:10–23

    Article  Google Scholar 

  • Das JC, De D (2016e) Optimized design of reversible gates in quantum dot-cellular automata: a review. Rev Theor Sci 4:279–286

    Article  Google Scholar 

  • Das JC, De D (2016f) Novel low power reversible encoder design using quantum-dot cellular automata. J Nanoelectron Optoelectron 11:450–458

    Article  Google Scholar 

  • Das JC, De D (2016g) Reversible half-adder design using quantum dot-cellular automata. Quantum Matter 5:(4)476-491

  • Das K, De D, De M (2012) Competent universal reversible logic gate design for quantum dot cellular automata. WSEAS Trans Circuits Syst 11:401–411

    Google Scholar 

  • Das K, De D, De M (2013) Realisation of semiconductor ternary quantum dot cellular automata. IET Micro Nano Lett 8:258–263

    Article  Google Scholar 

  • Das JC, Debnath B, De D (2015) Image steganography using quantum dot cellular automata. Quantum Matter 4:504–517

    Article  Google Scholar 

  • Das JC, Purkayastha T, De D (2016) Reversible nano-router using QCA for nanocommunication. Nanomater Energy 5:28–42. doi:10.1680/jnaen.15.00012

    Article  Google Scholar 

  • De D, Bhattacharaya S, Ghatak KP (2013) Quantum dots and quantum cellular automata: recent trends and applications. Nova Science, USA

    Google Scholar 

  • Debnath B, Das JC, De D (2016a) Reversible logic based image steganography using qca for secure nanocommunication. IET Circuits Devices Syst. doi:10.1049/iet-cds.2015.0245

    Google Scholar 

  • Debnath B, Das JC, De D (2016b) Correlation and convolution for binary image filter using QCA. Nanomater Energy 5:61–70

    Article  Google Scholar 

  • Ghosh B, Giridhar M, Nagaraju M, Salimath A (2014a) Ripple carry adder using five input majority gates in quantum dot cellular automata. Quantum Matter 3:495–498

    Article  Google Scholar 

  • Ghosh B, Agarwal A, Akram MW (2014b) An efficient quantum-dot cellular automata multi-bit adder design using 5-input majority gate. Quantum Matter 3:448–453

    Article  Google Scholar 

  • Ghosh B, Singh P, Singh SS, Salimath A (2015) Design of 4-bit subtractor using nanotechnology based quantum dot cellular automata. Quantum Matter 4:458–462

    Article  Google Scholar 

  • Goswami M, Kumar B, Tibrewal H, Mazumdar S (2014) Efficient realization of digital logic circuit using qca multiplexer. In: 2nd International Conference on Business and Information Management (ICBIM). doi:10.1109/ICBIM.2014.6970972

  • Hashemi S, Navi K (2012) New robust QCA d flip flop and memory structures. Microelectron J 43:929–940

    Article  Google Scholar 

  • Hashemi S, Navi K (2014) Reversible multiplexer design in quantum-dot cellular automata. Quantum Matter 3:523–528

    Article  Google Scholar 

  • Kianpour M, Sabbaghi-Nadooshan R (2014) A conventional design and simulation for CLB implementation of an FPGA quantum-dot cellular automata. Microprocess Microsyst 38:1046–1062

    Article  MATH  Google Scholar 

  • Lent CS, Tougaw P (1997) A device architecture for computing with quantum dots. Proceeding IEEE 85:541–557

    Article  Google Scholar 

  • Lent CS, Liu M, Lu Y (2006) Bennett clocking of quantum dot cellular automata and the limits to binary logic scaling. Nanotechnology 17:4240–4251

    Article  Google Scholar 

  • Lim LA, Ghazali A, Yan sct, Fat CC (2012) Sequential circuit design using quantum-dot cellular automata (qca). In: IEEE International Conference on Circuits and Systems (ICCAS). doi: 10.1109/ICCircuitsAndSystems.2012.6408320

  • Liu W, Srivastava S, Lu L, O’Neill M, Swartzlander EE (2012) Are QCA cryptographic circuits resistant to power analysis attack? IEEE Trans Nanotechnol 11:1239–1251

    Article  Google Scholar 

  • Mustafa M, Beigh MR (2014) Novel linear feedback shift register design in quantum-dot cellular automata. Indian J Pure Appl Phys 52:203–209

    Google Scholar 

  • Nelson VP, Nagle HT, Irwin JD, Carroll BD (1995) Digital logic circuit analysis and design. Prentice Hall, New Jersey

    Google Scholar 

  • Pradhan N, De D (2013) Spin transfer torque driven magnetic qca cells. Adv Nanomater Nanotechnol 143:561–569

    Article  Google Scholar 

  • Pudi V, Sridharan K (2011) Efficient design of a hybrid adder in quantum-dot cellular automata. IEEE Trans Very Large Scale Integr VLSI Syst 19:1535–1548

    Article  Google Scholar 

  • Pudi V, Sridharan K (2012) Low complexity design of ripple carry and Brent-Kung adders in QCA. IEEE Trans Nanotechnol 11:105–119

    Article  Google Scholar 

  • Sardinha LH, Costa AMM, Neto OPV, Vieira LFM, Vieira MAM (2013) Nanorouter: a quantum-dot cellular automata design. IEEE J Sel Areas Commun 31:825–834

    Article  Google Scholar 

  • Sen B, Dutta M, Sikdar BK (2014) Efficient design of parity preserving logic in quantum-dot cellular automata targeting enhanced scalability in testing. Microelectron J 45:239–248

    Article  Google Scholar 

  • Silva D, Sardinha L, Vieira M, Vieira L, Neto OV (2015) Robust Serial Nano-Communication with QCA. IEEE Trans Nanotechnology 14:464–472

    Article  Google Scholar 

  • Tehrani MA, Mahmoodi Y, Navi K (2013) Coplanar Architecture for Quantum-Dot Cellular Automata Systolic Array Design. Quantum Matter 2:474–480

    Article  Google Scholar 

  • Thapliyal H, Ranganathan N (2010) Reversible logic-based concurrently testable latches for molecular QCA. IEEE Trans Nanotechnol 9:62–69

    Article  Google Scholar 

  • Thapliyal H, Ranganathan N, Kotiyal S (2013) Design of testable reversible sequential circuits. IEEE Trans Very Large Scale Integr VLSI Syst 21:1201–1209

    Article  Google Scholar 

  • Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCADesigner: arapid design and Simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3:26–31

    Article  Google Scholar 

  • Xiao XCL, Ying S (2012) Design of dual-edge triggered flip flops based on dot cellular automata. J Zhejiang Univ Sci Comput Electron 13:385–392

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to The University Grants Commission, India, for providing with the Grant for accomplishment of the project under the UGC Major Project File No. 41-631/2012(SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jadav Chandra Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, J.C., De, D. Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design. Microsyst Technol 23, 4155–4168 (2017). https://doi.org/10.1007/s00542-016-3085-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3085-y

Keywords

Navigation