Skip to main content
Log in

Towards Multilayer QCA SISO Shift Register Based on Efficient D-FF Circuits

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum-dot Cellular Automata (QCA) is a new technology for replacing CMOS technology at nano-scale dimansion. Shift registers have commonly used circuit in the digital circuits design. In this paper, a new 3-bit Serial Input-Serial Output (SISO) QCA shift register is presented. The proposed circuit uses 3 novel D-Flip-Flops (D-FFs) that are developed in this paper. The proposed circuits are implemented by using QCADesigner tool version 2.0.3. The developed QCA SISO shift register has 120 cells and 0.03 μm2 area. The results show that the developed circuits have advantages compared to other QCA circuits in terms of area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sen, B., Nag, A., De, A., Sikdar, B.K.: Towards the hierarchical design of multilayer QCA logic circuit. J. Comput. Sci. 11, 233–244 (2015)

    Article  Google Scholar 

  2. Abutaleb, M.M.: A novel configurable flip flop design using inherent capabilities of quantum-dot cellular automata. Microprocess. Microsyst. 56, 101–112 (2018)

    Article  Google Scholar 

  3. Das, J.C., De, D.: Novel low power reversible binary incrementer design using quantum-dot cellular automata. Microprocess. Microsyst. 42, 10–23 (2016)

    Article  Google Scholar 

  4. Al-Shafi, A., Bahar, A.N.: QCA: an effective approach to implement logic circuit in nano-scale. In: International Conference on Informatics, Electronics and Vision (ICIEV), pp. 620–624. IEEE (2016)

  5. Sen, B., Goswami, M., Mazumdar, S., Sikdar, B.K.: Towards modular design of reliable quantum-dot cellular automata logic circuit using multiplexers. Comput. Electr. Eng. 45, 42–54 (2015)

    Article  Google Scholar 

  6. Balali, M., Rezai, A., Balali, H., Rabiei, F., Emadi, S.: Towards coplanar quantum-dot cellular automata adders based on efficient three-input XOR gate. Results Phys. 7, 1389–1395 (2017)

    Article  ADS  Google Scholar 

  7. Balali, M., Rezai, A.: Design of low-complexity and high-speed coplanar four-bit ripple carry adder in QCA technology. Int. J. Theor. Phys. 57(7), 1948–1960 (2018)

    Article  MathSciNet  Google Scholar 

  8. Bahar, A.N., Waheed, S., Habib, M.A.: A novel presentation of reversible logic gate in Quantum-dot Cellular Automata (QCA). In: International Conference on Electrical Engineering and Information & Communication Technology, pp. 1–6. IEEE (2014)

  9. Rashidi, H., Rezai, A.: Design of novel efficient multiplexer architecture for quantum-dot cellular automata. J. Nano- Electron. Phys. 9(1), 1012 (2017)

    Article  Google Scholar 

  10. Khan, A., Mandal, S., Nag, S., Chakrabarty, R.: Efficient multiplexer design and analysis using quantum dot cellular automata. In: Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), pp. 163–168. IEEE (2016)

  11. Goswami, M., Kumar, B., Tibrewal, H., ubhra Mazumdar, S.: Efficient realization of digital logic circuit using QCA multiplexer. In: International Conference on Business and Information Management (ICBIM), pp. 165–170. IEEE (2014)

  12. Das, J.C., De, D.: Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design. Microsyst. Technol. 23 (9), 4155–4168 (2017)

    Article  Google Scholar 

  13. Beigh, M.R., Mustafa, M.: Design and analysis of a simple D flip-flop based sequential logic circuits for QCA implementation. In: International Conference on Computing for Sustainable Global Development (INDIACom), pp. 536–540. IEEE (2014)

  14. Lim, L.A., Ghazali, A., Yan, S.C.T., Fat, C.C.: Sequential circuit design using Quantum-dot Cellular Automata (QCA). In: IEEE International Conference on Circuits and Systems (ICCAS), pp. 162–167 (2012)

  15. Ahmad, F., Mustafa, M., Wani, N.A., Mir, F.A.: A novel idea of pseudo-code generator in quantum-dot cellular automata (QCA). Int. J. Simul. Multidiscip. Des. Optim. 5, A04 (2014)

    Article  Google Scholar 

  16. Mahalakshmi, K.S., Hajeri, S., Jayashree, H., Agrawal, V.K.: Performance estimation of conventional and reversible logic circuits using QCA implementation platform. In: International Conference on Circuit, Power and Computing Technologies (ICCPCT), pp. 1–9. IEEE (2016)

  17. Padmanabhan, A., Miranda, A.V., Srinivas, T.: An efficient design of 4-bit serial input parallel output/ serial output shift register in quantum-dot cellular automata. In: International Conference on Computing for Sustainable Global Development (INDIACom), pp. 2736–2738. IEEE (2016)

  18. Sen, B., Goswami, M., Some, S.: Design of sequential circuits in multilayer QCA structure. In: IEEE International Symposium on Electronic System Design, pp. 21–25 (2013)

  19. Rezaei, A., Saharkhiz, H.: Design of low power random number generators for quantum-dot cellular automata. Int. J. Nano Dimens. 7(4), 308–320 (2016)

    Google Scholar 

  20. Reshi, J.I., Banday, M.T., Khanday, F.A.: Sequential circuit design using quantum-dot cellular automata (QCA). In: 2015 Symposium on Computers, Communication and Electronic Engineering, pp. 143–148 (2015)

  21. Mustafa, M., Beigh, M.: Novel linear feedback shift register design in quantum-dot cellular automata. Indian J. Pure Appl. Phys. (IJPAP) 52(03), 203–209 (2014)

    Google Scholar 

  22. Rashidi, H., Rezai, A.: High-performance full adder architecture in quantum-dot cellular automata. J. Eng. 7, 394–402 (2017)

    Google Scholar 

  23. Mokhtari, D., Rezai, A., Rashidi, H., Rabiei, F., Emadi, S., Karimi, A.: Design of novel efficient full adder circuit for quantum-dot cellular automata technology. Facta Univ. Ser.: Electron. Energ. (FU Elec Energ) 31(2), 279–285 (2018)

    Article  Google Scholar 

  24. Rashidi, H., Rezai, A., Soltan, S.: High-performance multiplexer architecture for quantum-dot cellular automata. J. Comput. Electron. 5(3), 968–981 (2016)

    Article  Google Scholar 

  25. Kianpour, M., Sabbaghi-Nadooshan, R.: A conventional design and simulation for CLB implementation of an FPGA quantum-dot cellular automata. Microprocess. Microsyst. 38(8), 1046–1062 (2014)

    Article  Google Scholar 

  26. Xiao, L., Chen, X., Ying, S.: Design of dual-edge triggered flip-flops based on quantum-dot cellular automata. J. Zhejiang Univ. Sci. B 13(5), 385–392 (2012)

    Article  Google Scholar 

  27. Anderson, H.J.: Magnetic QCA (MQCA) Design and Testing Tool, pp. 1–73. University of Virginia, Charlottesville (2012)

    Google Scholar 

  28. Kazemi Rad, S., Rasouli Heikalaba, S.: Reversible flip-flops in quantum-dot cellular automata. Int. J. Theor. Phys. 56(9), 2990–3004 (2017)

    Article  Google Scholar 

  29. Shamsabadi, A., Shahgholi, S., Ghahfarokhi, B., Zamanifar, K., Movahedinia, N.: Applying inherent capabilities of quantum-dot cellular automata to design: D flip-flop case study. J. Syst. Archit. 55(3), 180–187 (2009)

    Article  Google Scholar 

  30. Mano, M.M.R., Charles, R.K.: Logic and Computer Design Fundamentals. Pearson Education International, p. 283 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdalhossein Rezai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divshali, M.N., Rezai, A. & Karimi, A. Towards Multilayer QCA SISO Shift Register Based on Efficient D-FF Circuits. Int J Theor Phys 57, 3326–3339 (2018). https://doi.org/10.1007/s10773-018-3846-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3846-8

Keywords

Navigation