Skip to main content

Advertisement

Log in

Hydro-climatic changes promote shifts in zooplankton composition and diversity in wetlands of the Lower Paraná River Delta

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The Paraná River Delta is one of the most biodiverse and largest mosaic of wetland ecosystems in South America. Yet its natural hydrological patterns are being strongly distorted by sustained land use intensification and extraordinary severe droughts. Understanding whether the aforementioned processes negatively affect wetland biodiversity is urgently needed to delineate accurate conservation actions. In this study we analyzed zooplankton diversity patterns at the local and regional scales, as well as compared species composition between natural (freshwater marshes) and artificial water bodies (ditches), all of them affected by livestock activities. Our study involved two hydro-meteorologically contrasting conditions within two consecutive years of sustained drought: a high water stage (HW) and a low water stage (LW). Adverse environmental conditions in the LW period enhanced local zooplankton abundance and taxonomic richness, but decreased beta diversity and individual biomass, leading to a simplification of functional diversity. Species composition differed between freshwater marshes and ditches; however, they equally contributed to the zooplankton diversity metrics, suggesting that both kinds of freshwaters acted as complementary contributors to regional zooplankton diversity. Considering the regional drought patterns occurring in this landscape, we expect a generalized biotic and functional homogenization of zooplankton wetland diversity in the very next few years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The materials described in the manuscript, including all relevant raw data, will be freely available to any researcher wishing to use them for non-commercial purposes, without breaching participant confidentiality.

References

  • Abonyi, A., É. Ács, A. Hidas, I. Grigorszky, G. Várbíró, G. Borics & K. T. Kiss, 2018. Functional diversity of phytoplankton highlights long-term gradual regime shift in the middle section of the Danube River due to global warming, human impacts and oligotrophication. Freshwater Biol 63: 456–472.

    Article  Google Scholar 

  • Abrial, E., R. E. Lorenzón, A. P. Rabuffetti, M. C. Blettler & L. A. Espínola, 2021. Hydroecological implication of long-term flow variations in the middle Paraná river floodplain. J Hydrol 603: 126957.

    Article  Google Scholar 

  • APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, United States:

    Google Scholar 

  • APHA, 2017. Standard Methods for the Examination of Water and Wastewater, 23ed ed. Washington DC, American Public Health Association, American Water Works Association, Water Environment Federation:

    Google Scholar 

  • Aquino, D. S., G. Gavier-Pizarro & R. D. Quintana, 2021a. Disentangling the effects of hydro-climatic factors and land use intensification on wetland vegetation dynamics in the Lower Delta of the Paraná River. Remote Sens Appl 21: 100466.

    Google Scholar 

  • Aquino, D. S., Y. V. Sica, R. D. Quintana & G., Gavier-Pizarro, 2021b. Non-monotonic vegetation activity trends in the Lower Delta of the Paraná River : masking evidence of wetland degradation? Remote Sensing Applications: Society and Environment 24: 100.

    Google Scholar 

  • Baigún, C. R., A. Puig, P. G. Minotti, P. Kandus, R. Quintana, R. Vicari & J. A. Nestler, 2008. Resource use in the Parana River Delta (Argentina): moving away from an ecohydrological approach? Ecohydrol Hydrobiol 8: 245–262.

    Article  Google Scholar 

  • Barnett, A. J., K. Finlay & B. E. Beisner, 2007. Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshwater Biol 52: 796–813.

    Article  Google Scholar 

  • Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecol Biogeograp 19: 134–143.

    Article  Google Scholar 

  • Baselga, A., 2013. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol Evol 4: 552–557.

    Article  Google Scholar 

  • Bó, R., Quintana, R.D., Courtalón, P., Astrada, E., Bolkovik, M.L., Lo Coco, G. & A. Magnano, 2010. Efectos de los cambios en el régimen hidrológico por las actividades humanas sobre la vegetación y la fauna silvestre del Delta del Río Paraná En Pp. 33–63, Endicamientos y terraplenes en el Delta del Paraná. Situación, efectos ambientales y marco jurídico (Blanco, D. y Méndez, F.M., eds). Fundación Humedales/Wetlands International, Buenos Aires, Argentina

  • Boonstra, H., E. P. Reichman & P. J. van den Brink, 2011. Effects of the veterinary pharmaceutical ivermectin in indoor aquatic microcosms. Arch Environ Contam Toxicol 60: 77–89.

    Article  CAS  PubMed  Google Scholar 

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasaua, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norway J Zool 24: 419–456.

    Google Scholar 

  • Bozelli, R. L., S. M. Thomaz, A. A. Padial, P. M. Lopes & L. M. Bini, 2015. Floods decrease zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system. Hydrobiologia 753: 233–241.

    Article  CAS  Google Scholar 

  • Ter Braak, C. J., & P. Smilauer, 2002. CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (version 4.5). www. canoco. com.

  • Butchart, S. H., M. Walpole, B. Collen, A. Van Strien, J. P. Scharlemann, R. E. Almond & R. Watson, 2010. Global biodiversity: indicators of recent declines. Science 328: 1164–1168.

    Article  CAS  PubMed  Google Scholar 

  • Cadotte, M. W., K. Carscadden & N. Mirotchnick, 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48: 1079–1087.

    Article  Google Scholar 

  • Chaparro, G., M. C. Marinone, R. J. Lombardo, M. R. Schiaffino, A. de Souza Guimarães & I. O’Farrell, 2011. Zooplankton succession during extraordinary drought–flood cycles: a case study in a South American floodplain lake. Limnologica 41: 371–381.

    Article  Google Scholar 

  • Chaparro, G., M. S. Fontanarrosa, D. Cataldo & I. O’Farrell, 2015. Hydrology driven factors might weaken fish predation effects on zooplankton structure in a vegetated warm temperate floodplain lake. Hydrobiologia 752: 187–202.

    Article  CAS  Google Scholar 

  • Chaparro, G., Z. Horváth & O’farrell, I., Ptacnik, R., & T. Hein, 2018. Plankton metacommunities in floodplain wetlands under contrasting hydrological conditions. Freshwater Biol 63: 380–391.

    Article  CAS  Google Scholar 

  • da Silva Brito, M. T., J. Heino, U. M. Pozzobom & V. L. Landeiro, 2020. Ecological uniqueness and species richness of zooplankton in subtropical floodplain lakes. Aquatic Sci 82: 1–13.

    CAS  Google Scholar 

  • de Necker, L., R. Gerber, J. van Vuren, V. Wepener, N. J. Smit & L. Brendonck, 2022. Temporal dynamics of a subtropical floodplain pool after 2 years of supra-seasonal drought: a mesocosm study. Hydrobiologia 849: 795–815.

    Article  Google Scholar 

  • Declerck, S., M. Vanderstukken, A. Pals, K. Muylaert & L. D. Meester, 2007. Plankton biodiversity along a gradient of productivity and its mediation by macrophytes. Ecology 88: 2199–2210.

    Article  CAS  PubMed  Google Scholar 

  • Dejen, E., J. Vijverberg, L. A. Nagelkerke & F. A. Sibbing, 2004. Temporal and spatial distribution of microcrustacean zooplankton in relation to turbidity and other environmental factors in a large tropical lake (L. Tana, Ethiopia). Hydrobiologia 513: 39–49.

    Article  Google Scholar 

  • Dias, J. D., N. R. Simões, M. Meerhoff, F. A. Lansac-Tôha, L. F. M. Velho & C. C. Bonecker, 2016. Hydrological dynamics drives zooplankton metacommunity structure in a Neotropical floodplain. Hydrobiologia 781: 109–125.

    Article  CAS  Google Scholar 

  • Dias, J. D., M. R. Miracle & C. C. Bonecker, 2017. Do water levels control zooplankton secondary production in Neotropical floodplain lakes? Fund Appl Limnol 190: 49–62.

    Article  Google Scholar 

  • Diniz, L. P., D. K. Petsch & C. C. Bonecker, 2021. Zooplankton β diversity dynamics and metacommunity structure depend on spatial and temporal scales in a Neotropical floodplain. Freshwater Biol 66: 1328–1342.

    Article  Google Scholar 

  • Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guenard, G., Jombart, T., Larocque, G., Legendre, P., Madi, N., & H. H. Wagner, 2018. adespatial: Multivariate multiscale spatial analysis. R package version 0.2–0.

  • Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.

    Article  PubMed  Google Scholar 

  • Fontanarrosa, M. S., G. Chaparro, P. de Tezanos Pinto, P. Rodriguez & I. O’Farrell, 2010. Zooplankton response to shading effects of free-floating plants in shallow warm temperate lakes: a field mesocosm experiment. Hydrobiologia 646: 231–242.

    Article  CAS  Google Scholar 

  • Galafassi, G. P., 2005 La pampeanización del Delta: sociología e historia del proceso de transformación productiva, social y ambiental del Bajo Delta del Paraná. Extramuros Ediciones

  • Gebrehiwot, M., D. Kifle & L., Triest, 2017. Emergent macrophytes support zooplankton in a shallow tropical lake: a basis for wetland conservation. Environ Manag 60: 1127–1138.

    Article  Google Scholar 

  • Gilbert, J. D., I. Vicente, F. Ortega, E. García-Muñoz, R. Jiménez- Melero, G. Parra & F. Guerrero, 2017. Linking watershed land uses and crustacean assemblages in Mediterranean wetlands. Hydrobiologia 799: 181–191.

    Article  Google Scholar 

  • Goździejewska, A. M., J. Koszałka, R. Tandyrak, J. Grochowska & K. Parszuto, 2021. Functional responses of zooplankton communities to depth, trophic status, and ion content in mine pit lakes. Hydrobiologia 848: 2699–2719.

    Article  CAS  Google Scholar 

  • Gutierrez, M. F., Ü. N. Tavşanoğlu, N. Vidal, J. Yu, F. Teixeira-de Mello, A. I. Çakiroglu & E. Jeppesen, 2018. Salinity shapes zooplankton communities and functional diversity and has complex effects on size structure in lakes. Hydrobiologia 813: 237–255.

    Article  Google Scholar 

  • Gutierrez, M. F., N. R. Simões, D. Frau, M. Saigo & M. Licursi, 2020. Responses of stream zooplankton diversity metrics to eutrophication and temporal environmental variability in agricultural catchments. Environ Monitoring Assess 192: 1–17.

    Article  Google Scholar 

  • Gutierrez, M. F., F. R. Molina, F. Teixeira-de-Mello, D. Frau & C. Antoniazzi, 2021. Influence of fish predation on the dynamic of zooplankton and macroinvertebrates in floodplain lakes under different turbidity conditions: an experimental study. Aquat Sci 83: 1–14.

    Article  Google Scholar 

  • Gyllström, M. & L. A. Hansson, 2004. Dormancy in freshwater zooplankton: induction, termination and the importance of benthic-pelagic coupling. Aquatic Sci 66: 274–295.

    Article  Google Scholar 

  • Hanazato, T., 1998. Response of a zooplankton community to insecticide application in experimental ponds: a review and the implications of the effects of chemicals on the structure and functioning of freshwater communities. Environ Pollution 101: 361–373.

    Article  CAS  Google Scholar 

  • Havens, K. E., T. L. East & J. R. Beaver, 2007. Zooplankton response to extreme drought in a large subtropical lake. Hydrobiologia 589: 187–198.

    Article  Google Scholar 

  • Heino, J., 2008. Patterns of functional biodiversity and function-environment relationships in lake littoral macroinvertebrates. Limnol Oceanogr 53: 1446–1455.

    Article  Google Scholar 

  • Hijmans, R. J., 2019 raster: geographic Data Analysis and Modeling

  • Huffman GJ, Bolvin D, Braithwaite D, Hsu K, Joyse R, Xie P. 2014. Integrated Multi-satellitE Retrievals for GPM (IMERG), version 4.4. NASA’s Precipitation Processing Center

  • Iglesias, C., N. Mazzeo, M. Meerhoff, G. Lacerot, J. M. Clemente, F. Scasso & E. Jeppesen, 2011. High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667: 133–147.

    Article  Google Scholar 

  • Jeppesen, E., P. Noges, T. A. Davidson, J. Haberman, T. Noges, K. Blank, T. L. Lauridsen, M. Søndergaard, C. Sayer, R. Laugaste, et al., 2011. Zooplankton as indicators in lakes: a scientific- based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676: 279–297.

    Article  CAS  Google Scholar 

  • Ji, G., K. E. Havens, J. R. Beaver & R. S. Fulton, 2017. Response of zooplankton to climate variability: droughts create a perfect storm for cladocerans in shallow eutrophic lakes. Water 9: 764.

    Article  CAS  Google Scholar 

  • José de Paggi, S. B. & M. Devercelli, 2011. Land use and basin characteristics determine the composition and abundance of the microzooplankton. Water, Air, & Soil Pollution 218: 93–108.

    Article  CAS  Google Scholar 

  • José de Paggi, S. B. & J. C. Paggi, 2008. Hydrological connectivity as a shaping force in the zooplankton community of two lakes in the Paraná River floodplain. Int Rev Hydrobiol 93: 659–678.

    Article  Google Scholar 

  • José de Paggi, S. B., M. Devercelli & F. R. Molina, 2014. Zooplankton and their driving factors in a large subtropical river during low water periods. Fundamental Appl Limnol 184: 125–139.

    Article  Google Scholar 

  • Kandus, P., Quintana, R.D. & R.F. Bó, 2006. Patrones de paisaje y Biodiversidad del Bajo Delta del Río Paraná, first ed. In Mapa de ambientes Patterns of landscape and biodiversity of the Lower Delta of the Paraná River. Map of environments. Pablo Casamajor, Buenos Aires, Argentina, Argentina

  • Karpowicz, M., J. Ejsmont-Karabin, J. Kozłowska, I. Feniova & A. R. Dzialowski, 2020. Zooplankton community responses to oxygen stress. Water 12: 706.

    Article  CAS  Google Scholar 

  • Korhonen, J. J., J. Wang & J. Soininen, 2011. Productivity-diversity relationships in lake plankton communities. PloS One 6: e22041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korínek, V., 2002. Cladocera. In Fernando, C. H. (ed), A Guide to Tropical Freshwater Zooplankton Backhuys Publishers, USA: 69e122.

    Google Scholar 

  • Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas 2: 234–673.

    Google Scholar 

  • Krztoń, W., J. Kosiba, A. Pociecha & E. Wilk-Woźniak, 2019. The effect of cyanobacterial blooms on bio-and functional diversity of zooplankton communities. Biodivers Conserv 28: 1815–1835.

    Article  Google Scholar 

  • Laliberté, E., Legendre, P. & B., Shipley, 2015. FD: measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. Package 1.0–12. https://CRAN.R-project.org/package=FD.

  • Legendre, P. & M. De Cáceres, 2013. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol Lett 16: 951–963.

    Article  PubMed  Google Scholar 

  • Lepš, J. & P. Šmilauer, 1999. Multivariate analysis of ecological data, University of South Bohemia, České Budějovice, Faculty of Biological Sciences:, 110.

    Google Scholar 

  • Lopes, V. G., C. W. C. Branco, B. Kozlowsky-Suzuki, I. F. Sousa-Filho, L. C. Souza & L. M. Bini, 2017. Predicting temporal variation in zooplankton beta diversity is challenging. PLoS One 12: e0187499.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopes, V. G., C. W. C. Branco, B. Kozlowsky-Suzuki & L. M. Bini, 2019. Zooplankton temporal beta diversity along the longitudinal axis of a tropical reservoir. Limnology 20: 121–130.

    Article  Google Scholar 

  • Magnano, A. L., N. G. Fracassi, A. S. Nanni & R. D. Quintana, 2019a. Changes in bird assemblages in an afforestation landscape in the lower delta of the Paraná River, Argentina. Emu - Austral Ornithology 119: 346–354.

    Article  Google Scholar 

  • Magnano, A. L., P. Krug, V. Casa & y R.D. Quintana., 2019b. Changes in vegetation composition and structure following livestock exclusion in a temperate fluvial wetland. Appl Veg Sci 22: 484–493.

    Article  Google Scholar 

  • Maloufi, S., A. Catherine, D. Mouillot, C. Louvard, A. Couté, C. Bernard & M. Troussellier, 2016. Environmental heterogeneity among lakes promotes hyper β-diversity across phytoplankton communities. Freshwater Biol 61: 633–645.

    Article  Google Scholar 

  • Malvárez, A. I., 1999. El Delta Del Rio Paraná como mosaico de humedales. In Malvárez, A. I. (ed), Tópicos Sobre Humedales Subtropicales y Templados de Sudamérica UNESCO, Montevideo, Uruguay: 35–53.

    Google Scholar 

  • Martins, B. A., Coelho, P. N., Nogueira, M. G., & G. Perbiche-Neves, 2020. Composition and richness of monogonont rotifers from La Plata River Basin, South America. Biota Neotropica 20

  • Mayora, G., P. Scarabotti, B. Schneider, P. Alvarenga & M. Marchese, 2020. Multiscale environmental heterogeneity in a large river-floodplain system. J South Am Earth Sci 100: 102546.

    Article  Google Scholar 

  • Mayora, G., A. Piedrabuena, J. J. Ferrato, M. F. Gutierrez & L. Mesa, 2021. Water quality dynamics of floodplain lakes in relation to river flooding and cattle grazing. Mar Freshwater Res 72: 1496.

    Article  CAS  Google Scholar 

  • Mesa, L., G. Mayora, M. Saigo & F. Giri, 2015. Nutrient dynamics in wetlands of the Middle Paraná River subjected to rotational cattle management. Wetlands 35: 1117–1125.

    Article  Google Scholar 

  • Mesa, L., M. F. Gutiérrez, L. Montalto, V. Perez & A. Lifschitz, 2020. Concentration and environmental fate of ivermectin in floodplain wetlands: an ecosystem approach. Sci Total Environ 706: 135692.

    Article  CAS  PubMed  Google Scholar 

  • Messager, M. L., B. Lehner, C. Cockburn, N. Lamouroux, H. Pella, T. Snelder, K. Tockner, T. Trautmann & C. Watt, 2021. Global prevalence of non-perennial rivers and streams. Nature 594: 391–397.

    Article  CAS  PubMed  Google Scholar 

  • Minotti, P. G., Kandus, P., & I. Fabricant, 2013. Actualización y Profundización del Mapa de Endicamientos y Terraplenes de la Región del Delta del Paraná. 2013. Buenos Aires

  • Mitsch, W. J., & J. G. Gosselink, 2015. Wetlands. In Wiley (5th ed.). JohnWiley & Sons, Inc. All

  • Nanni, A., N. Fracassi, A. L. Magnano, A. Cicchino & R. D. Quintana, 2019. Ground beetles in a changing world: communities in a modified wetland landscape. Neotropical Entomol 48: 729–738.

    Article  CAS  Google Scholar 

  • Naumann, G., Podesta, G., Marengo, J., Luterbacher, J., Bavera, D., Arias-Muñoz, C., Marinho Ferreira Barbosa, P., Cammalleri, C., Chamorro, L., Cuartas, L.A., De Jager, A., Escobar, C., Hidalgo, C., Leal De Moraes, O.L., Mccormick, N., Maetens, W., Magni, D., Masante, D., Mazzeschi, M., Seluchi, M., De Los Milagros Skansi, M., Spinoni, J. and Toreti, A., 2021. The 2019–2021 extreme drought episode in La Plata Basin, EUR 30833 EN, Publications Office of the European Union, Luxembourg, 2021, ISBN 978–92–76–41898–6 JRC126508.

  • Neiff, J. J., 1990. Ideas para la interpretación ecológica del Paraná. Interciencia 15: 424–441.

    Google Scholar 

  • Nunes Coelho, P. & R. Henry, 2021. Functional groups of microcrustaceans along a horizontal gradient in a Neotropical lake colonized by macrophytes. Aquatic Sciences 83: 1–13.

    Google Scholar 

  • Obertegger, U. & M. Manca, 2011. Response of rotifer functional groups to changing trophic state and crustacean community. J Limnol 70: 231–238.

    Article  Google Scholar 

  • Ouyang, Z. T., Y. Gao, X. Xie, H. Q. Guo, T. T. Zhang & B. Zhao, 2013. Spectral discrimination of the invasive plant Spartina alterniflora at multiple phenological stages in a saltmarsh wetland. PloS One 8: e67315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paggi, J. C., 1979. Revisión de las especies argentinas del género Bosmina Baird agrupadas en el subgénero Neobosmina Lieder (Crustacea: Cladocera). Acta Zoologica Lilloana 137–162.

  • Paggi, J. C., 1995. Crustacea Cladocera. In: E. C. Lopretto & G. Tell (eds), Ecosistemas de aguas continentales metodologías para su estudio Ediciones Sur, La Plata, 3: 909–951

  • Pavoine, S. & S. Dolédec, 2005. The apportionment of quadratic entropy: a useful alternative for partitioning diversity in ecological data. Environ Ecol Stat 12: 125–138.

    Article  CAS  Google Scholar 

  • Puig, A., H. F. O. Salinas & J. A. Borús, 2016. Recent changes (1973–2014 versus 1903–1972) in the flow regime of the Lower Paraná River and current fluvial pollution warnings in its Delta Biosphere Reserve. Environ Sci Pollut Res 23: 11471–11492.

    Article  CAS  Google Scholar 

  • QGIS Development Team, 2021. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org

  • Qi, Y., Yu, H., Fu, Q., Chen, Q., Ran, J., & Z, Yang, 2022. Future changes in drought frequency due to changes in the mean and shape of PDSI probability density function under RCP4. 5 scenario. Frontiers in Earth Science, 386.

  • Quintana, R.D. y Bó, R. 2011. ¿Por qué el Delta del Paraná es una región única en la Argentina? En: Pp. 42–53 “El Patrimonio natural y cultural del Bajo Delta Insular. Bases para su conservación y uso sustentable”. R. Quintana, V. Villar, E. Astrada, P. Saccone y S.. Malzof, Eds. Convención Internacional sobre los Humedales (Ramsar, Irán, 1971)/Aprendelta. Buenos Aires. 316 pp. ISBN 978–987–27728–0–2

  • R Core Team, Team RC, R Core Team, 2019 R: A Language and Environment for Statistical Computing.

  • Rao, C. R., 1982. Diversity and dissimilarity coefficients: A uni- fied approach. Theor Popul Biol 21: 24–43.

    Article  Google Scholar 

  • Reis, V., V. Hermoso, S. K. Hamilton, D. Ward, E. Fluet-Chouinard, B. Lehner & S. Linke, 2017. A global assessment of inland wetland conservation status. BioScience 67: 523–533.

    Article  Google Scholar 

  • Ringuelet, R. A., 1958. Los Crustáceos Copépodos de las aguas continentales de la República Argentina. Contribuciones científicas. Zoología. Facultad de Ciencias Exactas y Naturales. UBA, 1(2)

  • Rizo, E. Z. C., Y. Gu, R. D. S. Papa, H. J. Dumont & B. P. Han, 2017. Identifying functional groups and ecological roles of tropical and subtropical freshwater Cladocera in Asia. Hydrobiologia 799: 83–99.

    Article  Google Scholar 

  • Roman, M. R., A. L. Gauzens, W. K. Rhinehart & J. R. White, 1993. Effects of low oxygen waters on Chesapeake Bay zooplankton. Limnol Oceanogr 38: 1603–1614.

    Article  Google Scholar 

  • Schmera, D., J. Heino, J. Podani, T. Eros & S. Dolédec, 2017. Functional diversity: a review of methodology and current knowledge in freshwater macroinvertebrate research. Hydrobiologia 787: 27–44.

    Article  Google Scholar 

  • Setubal, R. B. & R. L. Bozelli, 2021. Zooplankton functional complementarity between temporary and permanent environments. Acta Limnologica Brasiliensia. https://doi.org/10.1590/s2179-975x5620.

    Article  Google Scholar 

  • Sica, Y. V., R. D. Quintana, V. C. Radeloff & G. I. Gavier-Pizarro, 2016. Wetland loss due to land use change in the Lower Paraná River Delta, Argentina. Sci Total Environ 568: 967–978.

    Article  CAS  PubMed  Google Scholar 

  • Sica, Y., G. Gavier-Pizarro, A. Pidgeon, A. Travaini, J. Bustamante, R. Volker & R. D. Quintana, 2018. Changes in bird assemblages in a wetland ecosystem after 14 years of intensified cattle activity. Austral Ecol 43: 786–797.

    Article  Google Scholar 

  • Simeoni, U. & C. Corbau, 2009. A review of the Delta Po evolution (Italy) related to climatic changes and human impacts. Geomorphology 107: 64–71.

    Article  Google Scholar 

  • Simoes, N. R., J. D. Dias, C. M. Leal, L. D. S. M. Braghin, F. A. Lansac-Tôha & C. C. Bonecker, 2013. Floods control the influence of environmental gradients on the diversity of zooplankton communities in a neotropical floodplain. Aquat Sci 75: 607–617.

    Article  Google Scholar 

  • Simoes, N. R., L. S. Braghin, G. A. Dure, J. S. Santos, S. L. Sonoda & C. C. Bonecker, 2020. Changing taxonomic and functional β-diversity of cladoceran communities in Northeastern and South Brazil. Hydrobiologia 847: 3845–3856.

    Article  Google Scholar 

  • Simões, N. R., A. H. Nunes, J. D. Dias, F. A. Lansac-Tôha, L. F. M. Velho & C. C. Bonecker, 2015. Impact of reservoirs on zooplankton diversity and implications for the conservation of natural aquatic environments. Hydrobiologia 758: 3–17.

    Article  CAS  Google Scholar 

  • Sinistro, R., 2010. Top-down and bottom-up regulation of planktonic communities in a warm temperate wetland. J Plankton Res 32: 209–220.

    Article  CAS  Google Scholar 

  • Soto, D. & P. Rios, 2006. Influence of trophic status and conductivity on zooplankton composition in lakes and ponds of Torres del Paine National Park (Chile). Biologia 61: 541–546.

    Article  CAS  Google Scholar 

  • ter Braak, C. J., 1994. Canonical community ordination. Part I: Basic theory and linear methods. Ecoscience 1: 127–140.

    Article  Google Scholar 

  • Van Asselen, S. & P. H. Verburg, 2013. Land cover change or land-use intensification: simulating land system change with a global-scale land change model. Glob Change Biol 19: 3648–3667.

    Article  Google Scholar 

  • Wang, L., W. Bie, H. Li, T. Liao, X. Ding, G. Wu & T, Fei, 2022. Small water body detection and water quality variations with changing human activity intensity in wuhan. Remote Sensing 14: 200.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). This study was supported by the grants of the Agencia Nacional de Promoción Científica y Tecnológica (PICT 2017-2982 and PICT-2018-02203) and the “Corredor Azul” Program from Fundación Humedales/Wetlands International-DBO Ecology. We thank Esteban Creus, Luciana Montalto and Javier Lopez for the field assistance. We thank the reviewers who provided useful comments and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Florencia Gutierrez.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

The authors confirm that this work is original and has not been published elsewhere, nor is it currently under consideration for publication elsewhere.

Additional information

Handling editor: Pinel-Alloul Bernadette

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 78 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutierrez, M.F., Epele, L.B., Mayora, G. et al. Hydro-climatic changes promote shifts in zooplankton composition and diversity in wetlands of the Lower Paraná River Delta. Hydrobiologia 849, 3463–3480 (2022). https://doi.org/10.1007/s10750-022-04955-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04955-0

Keywords

Navigation