Skip to main content

Advertisement

Log in

Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD)

  • CLADOCERA AS INDICATORS
  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

With the implementation of the EU Water Framework Directive (WFD), the member states have to classify the ecological status of surface waters following standardised procedures. It was a matter of some surprise to lake ecologists that zooplankton were not included as a biological quality element (BQE) despite their being considered to be an important and integrated component of the pelagic food web. To the best of our knowledge, the decision of omitting zooplankton is not wise, and it has resulted in the withdrawal of zooplankton from many so-far-solid monitoring programmes. Using examples from particularly Danish, Estonian, and the UK lakes, we show that zooplankton (sampled from the water and the sediment) have a strong indicator value, which cannot be covered by sampling fish and phytoplankton without a very comprehensive and costly effort. When selecting the right metrics, zooplankton are cost-efficient indicators of the trophic state and ecological quality of lakes. Moreover, they are important indicators of the success/failure of measures taken to bring the lakes to at least good ecological status. Therefore, we strongly recommend the EU to include zooplankton as a central BQE in the WFD assessments, and undertake similar regional calibration exercises to obtain relevant and robust metrics also for zooplankton as is being done at present in the cases of fish, phytoplankton, macrophytes and benthic invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Amsinck, S. L., E. Jeppesen & F. Landkildehus, 2005a. Relationships between environmental variables and zooplankton subfossils in the surface sediments of 36 shallow coastal brackish lakes with special emphasis on the role of fish. Journal of Paleolimnology 33: 39–51.

    Article  Google Scholar 

  • Amsinck, S. L., E. Jeppesen & F. Landkildehus, 2005b. Inference of past changes in zooplankton community structure and planktivorous fish abundance from sedimentary subfossils – a study of a coastal lake subjected to major fish kill incidents during the past century. Archiv für Hydrobiologie 162: 363–382.

    Article  CAS  Google Scholar 

  • Amsinck, S. L., A. Strzelczak, R. Bjerring, F. Landkildehus, T. L. Lauridsen, K. Christoffersen & E. Jeppesen, 2006. Lake depth rather than planktivory determines cladoceran community structure in Faroese lakes – evidence from contemporary data and sediments. Freshwater Biology 51: 2124–2142.

    Article  CAS  Google Scholar 

  • Andronikova, I., 1996. Zooplankton characteristics in monitoring of Lake Ladoga. Hydrobiologia 322: 173–179.

    Article  Google Scholar 

  • Auer, B., U. Elzer & H. Arndt, 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. Journal of Plankton Research 26: 697–709.

    Article  Google Scholar 

  • Balayla, D. J., T. L. Lauridsen, M. Søndergaard & E. Jeppesen, 2010. Winter fish kills and zooplankton in future scenarios of climate change. Hydrobiologia 646: 159–172.

    Article  CAS  Google Scholar 

  • Battarbee, R., N. J. Anderson, E. Jeppesen & P. Leavitt, 2005. Eutrophication and oligotrophication – the combined role of palaeolimnological and observational records. Freshwater Biology 50: 1772–1780.

    Article  CAS  Google Scholar 

  • Beklioğlu, M., S. Romo, I. Kagalou, X. Quintana & E. Bécares, 2007. State of the art in the functioning of shallow Mediterranean lakes: workshop conclusions. Hydrobiologia 584: 317–326.

    Article  Google Scholar 

  • Benndorf, J., 1995. Possibilities and limits for controlling eutrophication by biomanipulation. Internationale Revue der Gesamten Hydrobiologie 80: 519–534.

    Article  CAS  Google Scholar 

  • Birks, H., 1980. Plant macrofossils in Quaternary lake sediments. Archiv für Hydrobiologie 15: 1–60.

    Google Scholar 

  • Blank, K., R. Laugaste & J. Haberman, 2010. Temporal and spatial variation in the zooplankton:phytoplankton biomass ratio in a large shallow lake. Estonian Journal of Ecology 59: 99–115.

    Article  Google Scholar 

  • Blenckner, T., R. Adrian, D. M. Livingstone, E. Jennings, G. A. Weyhenmeyer, D. G. George, T. Jankowski, M. Jarvinen, C. N. Aonghusa, T. Noges, T. D. Straile & K. Teubner, 2007. Large-scale climatic signatures in lakes across Europe: a meta-analysis. Global Change Biology 13: 1314–1326.

    Article  Google Scholar 

  • Bos, D. G., B. F. Cumming, C. E. Watters & J. P. Smol, 1996. The relationship between zooplankton, conductivity and lake-water ionic composition in 111 lakes from the Interior Plateau of British Colombia, Canada. International Journal of Salt Lake Research 5: 1–15.

    Article  Google Scholar 

  • Bos, D. G., B. F. Cumming & J. P. Smol, 1999. Cladocera and Anastraca from the Interior Plateau of British Columbia Canada, as paleolimnological indicators of salinity and lake level. Hydrobiologia 39: 129–141.

    Article  Google Scholar 

  • Brodersen, K. P., M. C. Whiteside & C. Lindegaard, 1998. Reconstruction of trophic state in Danish lakes using subfossil chydorid (Cladocera) assemblages. Canadian Journal of Aquatic Sciences 55: 1093–1103.

    Article  Google Scholar 

  • Brooks, L. & I. Dodson, 1965. Predation, body size and composition of the plankton. Science 50: 28–35.

    Article  Google Scholar 

  • Brucet, S., D. Boix, S. Gascón, J. Sala, X. D. Quintana, A. Badosa, M. Søndergaard, T. L. Lauridsen & E. Jeppesen, 2009. Species richness of crustacean zooplankton and trophic structure of brackish lagoons in contrasting climate zones: north temperate Denmark and Mediterranean Catalonia (Spain). Ecography 32: 692–702.

    Article  Google Scholar 

  • Buchaca, T., T. Skov, S. Amsinck, V. Gonçalves, J. M. N. Azevedo & E. Jeppesen, 2011. Rapid ecological shift following piscivorous fish introduction to increasingly eutrophic Lake Furnas (Azores Archipelago, Portugal): a paleoecological approach. Ecosystems 14: 458–477.

    Article  CAS  Google Scholar 

  • Caroni, R. & K. Irvine, 2010. The potential of zooplankton communities for ecological assessment of lakes: redundant concept or political oversight? Biology and Environment: Proceedings of the Royal Irish Academy 110B: 35–53.

    Article  Google Scholar 

  • Carpenter, S. R., J. J. Cole, J. R. Hodgson, J. F. Kitchell, M. L. Pace, D. Bade, K. L. Cottingham, T. E. Essington, J. N. Houser & D. E. Schindler, 2001. Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecological Monographs 71: 163–186.

    Article  Google Scholar 

  • CIS, 2003. Monitoring under the Water Framework Directive. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Document No 7. Working Group 2.7 – Monitoring. European Communities, Luxembourg.

  • Cole, J. J., M. L. Pace, S. R. Carpenter & J. F. Kitchell, 2000. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnology and Oceanography 45: 1718–1730.

    Article  Google Scholar 

  • Davidson, T. A. 2006. Zooplankton ecology and palaeoecology in nutrient enriched shallow lakes. PhD Thesis, University College of London, UK.

  • Davidson, T. & P. Appleby, 2003. The environmental history of Kenfig Pool cSAC Contract Science Report, no 561. Countryside Council for Wales.

  • Davidson, T., C. Sayer, H. Bennion, C. David, N. Rose & M. Wade, 2005. A 250 year comparison of historical, macrofossil and pollen records of aquatic plants in a shallow lake. Freshwater Biology 50: 1671–1686.

    Article  Google Scholar 

  • Davidson, T., C. Sayer, M. Perrow, M. Bramm & E. Jeppesen, 2007. Are the controls of species composition similar for contemporary and sub-fossil cladoceran assemblages? A study of 39 shallow lakes of contrasting trophic status. Journal of Paleolimnology 38: 117–134.

    Article  Google Scholar 

  • Davidson, T., C. Sayer, P. Langdon, A. Burgess & M. Jackson, 2010a. Inferring past zooplanktivorous fish and macrophyte density in a shallow lake: application of a new regression tree model. Freshwater Biology 55: 584–599.

    Article  Google Scholar 

  • Davidson, T., C. Sayer, M. Perrow, M. Bramm & E. Jeppesen, 2010b. The simultaneous inference of zooplanktivorous fish and macrophyte density from sub-fossil cladoceran assemblages: a multivariate regression tree approach. Freshwater Biology 55: 546–564.

    Article  CAS  Google Scholar 

  • Davidson, T. A., H. Bennion, C. Sayer, E. Jeppesen, G. H. Clarke, D. Morley, B. V. Odgaard, P. Rasmussen, R. Rawcliffe, J. Salgado & S. L. Amsinck, this volume. The role of cladocerans in tracking long-term in shallow lake trophic status. Hydrobiologia.

  • Duigan, C. & H. Birks, 2000. The late-glacial and early-Holocene palaeoecology of cladoceran microfossil assemblages at Kråkenes, western Norway, with a quantitative reconstruction of temperature changes. Journal of Paleolimnology 23: 67–76.

    Article  Google Scholar 

  • EEA, 1996. EEA Topic Report 2: Inland Waters: Surface Water Quality Monitoring.

  • Gannon, J. E. & R. S. Stemberger, 1978. Zooplankton (especially crustacean and rotifers) as indicators of water quality. Transactions of the American Microscopical Society 97: 16–35.

    Article  Google Scholar 

  • Gliwicz, Z. M., 2003. Between hazards of starvation and risk of predation: the ecology of offshore animals. International Ecology Institute, Oldendorf/Luhe.

    Google Scholar 

  • Gurney, R., 1929. The freshwater Crustacea of Norfolk. Transaction of the Norfolk and Norwich Naturalists Society 12: 550–581.

    Google Scholar 

  • Gyllström, M., L.-A. Hansson, E. Jeppesen, F. Garcia-Criado, E. Gross, K. Irvine, T. Kairesalo, R. Kornijów, M. Miracle, M. Nykänen, T. Nõges, S. Romo, D. Stephen, E. Van Donk & B. Moss, 2005. The role of climate in shaping zooplankton communities of shallow lakes. Limnology and Oceanography 50: 2008–2021.

    Article  Google Scholar 

  • Haberman, J., 1996. Contemporary state of the zooplankton in Lake Peipsi. Hydrobiologia 338: 113–123.

    Article  Google Scholar 

  • Haberman, J., 1998. Zooplankton of Lake Võrtsjärv. Limnologica 28: 49–65.

    Google Scholar 

  • Haberman, J. & H. Künnap, 2002. Mean zooplankter weight as a characteristic feature of an aquatic ecosystem. Proceedings of the Estonian Academy of Sciences: Biology, Ecology 51: 26–44.

    Google Scholar 

  • Haberman, J. & R. Laugaste, 2003. On characteristics reflecting the trophic state of large and shallow Estonian lakes (L. Peipsi, L. Võrtsjärv). Hydrobiologia 506: 737–744.

    Article  Google Scholar 

  • Haberman, J., R. Laugaste & T. Nõges, 2007. The role of cladocerans reflecting the trophic status of two large and shallow Estonian lakes. Hydrobiologia 584: 157–166.

    Article  Google Scholar 

  • Harmsworth, R. & M. Whiteside, 1968. Relation of Cladoceran remains in lake sediments to primary productivity lakes. Ecology 49: 998–1000.

    Article  Google Scholar 

  • Havens, K. E. & J. B. Beaver, 2011. Composition, size, and biomass of zooplankton in large productive Florida lakes. Hydrobiologia. doi:10.1007/s10750-010-0386-5.

  • Hrbacek, J., M. Dvorakova, V. Korinek & L. Prochazkova, 1961. Demonstration of the effect of the fish stock on species composition of zooplankton and the integrity of metabolism of the whole plankton assemblage. Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 18: 162–170.

    Google Scholar 

  • Jackson, D. A., 1995. PROTEST: a procrustean randomization test of community environment concordance. Écoscience 2: 297–303.

    Google Scholar 

  • Jackson, L. J., M. Søndergaard, T. L. Lauridsen & E. Jeppesen, 2007. A comparison of shallow Danish and Canadian lakes and implications of climate change. Freshwater Biology 52: 1782–1792.

    Article  CAS  Google Scholar 

  • Jeppesen, E., E. A. Madsen & J. P. Jensen, 1996. Reconstructing past density of planktivorous fish and trophic structure from sedimentary zooplankton fossils: a surface sediment calibration data set from shallow lakes. Freshwater Biology 36: 115–127.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, J. Windolf, T. Lauridsen, M. Søndergaard, K. Sandby & P. Hald Møller, 1998. Changes in nitrogen retention in shallow eutrophic lakes following a decline in density of cyprinids. Archiv für Hydrobiologie 142: 129–152.

    CAS  Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard, T. L. Lauridsen & F. Landkildehus, 2000. Trophic structure, species richness and biodiversity in Danish Lakes: changes along a phosphorus gradient. Freshwater Biology 45: 201–218.

    Article  CAS  Google Scholar 

  • Jeppesen, E., P. Leavitt, L. De Meester & J. P. Jensen, 2001a. Functional ecology and palaeolimnology: using cladoceran remains to reconstruct anthropogenic impact. Trends in Ecology & Evolution 16: 191–198.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, H. Skovgaard & C. B. Hvidt, 2001b. Changes in the abundance of planktivorous fish in Lake Skanderborg during the past two centuries – a palaeoecological approach. Palaeogeography Palaeoclimatology Palaeoecology 172: 143–152.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, S. L. Amsinck, F. Landkildehus, T. Lauridsen & S. F. Mitchell, 2002. Reconstructing the historical changes in Daphnia mean size and planktivorous fish abundance in lakes from the size of Daphnia ephippia in the sediment. Journal of Paleolimnology 27: 133–143.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, C. Jensen, B. Faafeng, P. Brettum, D. Hessen, M. Søndergaard, T. Lauridsen & K. Christoffersen, 2003a. The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: study of 466 lakes from the temperate zone to the Arctic. Ecosystems 6: 313–325.

    Article  CAS  Google Scholar 

  • Jeppesen, E., J. P. Jensen, T. L. Lauridsen, S. L. Amsinck, K. Christoffersen, M. Søndergaard & S. F. Mitchell, 2003b. Sub-fossils of cladocerans in the surface sediment of 135 lakes as proxies for community structure of zooplankton, fish abundance and lake temperature. Hydrobiologia 491: 1573–5117.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard & T. Lauridsen, 2005. Response of fish and plankton to nutrient loading reduction in 8 shallow Danish lakes with special emphasis on seasonal dynamics. Freshwater Biology 50: 1616–1627.

    Article  CAS  Google Scholar 

  • Jeppesen, E., B. Kronvang, M. Meerhoff, M. Søndergaard, K. M. Hansen, H. E. Andersen, T. L. Lauridsen, M. Beklioglu, A. Özen & J. E. Olesen, 2009. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. Journal of Environmental Quality 38: 1030–1041.

    Article  Google Scholar 

  • Johansson, L. S., S. Amsinck, R. Bjerring & E. Jeppesen, 2005. Holocene lake development at Lake Dallund, Denmark: trophic structure inferred from cladoceran subfossils. Holocene 15: 1143–1151.

    Article  Google Scholar 

  • Karabin, A., 1985. Pelagic zooplankton (Rotatoria + Cladocera) variation in the process of lake eutrophication. I. Structural and quantitative features. Ekologia Polska 33: 567–616.

    Google Scholar 

  • Kattel, G. R., R. W. Battarbee, A. Mackay & H. J. B. Birks, 2007. Are cladoceran fossils in lake sediment samples a biased reflection of the communities from which they are derived? Journal of Paleolimnology 38: 157–181.

    Article  Google Scholar 

  • Korhola, A., H. Olander & T. Blom, 2000. Cladoceran and chironomid assemblages as quantitative indicators of water depth in subarctic Fennoscandian lakes. Journal of Paleolimnology 24: 43–54.

    Article  Google Scholar 

  • Mäemets, A., 1980. Izmenenija zooplanktona. – Antropogennoe vozdeistvije na malye ozera [Changes of zooplankton. – Anthropogenic impact to small lakes]. Leningrad 54–64 (in Russian).

  • Moss, B., 2008. The Water Framework Directive: total environment or political compromise? Journal of the Total Environment 400: 32–41.

    Article  CAS  Google Scholar 

  • Moss, B., S. Stephen, C. Alvarez, E. Becares, W. van de Bund, E. van Donk, E. de Eyto, T. Feldmann, C. Fernández-Aláez, M. Fernández-Aláez, R. J. M. Franken, F. García-Criado, E. Gross, M. Gyllström, L.-A. Hansson, K. Irvine, A. Järvalt, J. P. Jensen, E. Jeppesen, T. Kairesalo, R. Kornijow, T. Krause, H. Künnap, A. Laas, L. Lill, H. Luup, M. A. Miracle, P. Nõges, T. Nõges, M. Nykannen, O. Ott, E. T. H. M. Peeters, G. Phillips, S. Romo, J. Salujõe, M. Scheffer, K. Siewertsen, T. Tesch, H. Timm, L. Tuvikene, I. Tonno, K. Vakilainnen & T. Virro, 2003. The determination of ecological quality in shallow lakes – a tested expert system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation: Marine and Freshwater Systems 13: 507–550.

    Article  Google Scholar 

  • Nevalainen, L., 2010. Evaluation of microcrustacean (Cladocera, Chydoridae) biodiversity based on sweep net and surface sediment samples. Ecoscience 17: 356–364.

    Article  Google Scholar 

  • Nevalainen, L., 2011. Intra-lake heterogeneity of sedimentary cladoceran (Crustacea) assemblages forced by local hydrology. Hydrobiologia. doi:10.1007/s10750-011-0707-3.

  • Nevalainen, L., K. Sarmaja-Korjonen & T. P. Luoto, 2011. Sedimentary Cladocera as indicators of past water level changes in shallow northern lakes. Quaternary Research 75: 430–437.

    Article  Google Scholar 

  • Parpală, L., L. G. Tóth, V. Zinevici, P. Németh & K. Szalontai, 2003. Structure and production of the metazoan zooplankton in Lake Balaton (Hungary) in summer. Hydrobiologia 506: 347–351.

    Article  Google Scholar 

  • Premazzi, G. & G. Chiaudiani, 1992. Ecological quality of surface waters. Quality assessment schemes for European Community lakes. EUR 14563 EN. European Commission, Joint Research Centre, Ispra, Italy.

  • Radwan, S. & B. Popiołek, 1989. Percentage of rotifers in spring zooplankton in lakes of different trophy. Hydrobiologia 186(187): 235–238.

    Article  Google Scholar 

  • Ruuhijärvi, J., M. Rask, S. Vesala, A. Westermark, M. Olin, J. Keskitalo & A. Lehtovaara, 2010. Recovery of the fish community and changes in the lower trophic levels in a eutrophic lake after a winter kill of fish. Hydrobiologia 646: 145–158.

    Article  Google Scholar 

  • Sarmaja-Korjonen, K., 2003. Chydorid ephippia as indicators of environmental changes – biostratigraphical evidence from two lakes in southern Finland. The Holocene 13: 691–700.

    Article  Google Scholar 

  • Sayer, C. D., T. A. Davidson, J. I. Jones & P. G. Langdon, 2010a. Combining contemporary ecology and palaeolimnology to understand shallow lake ecosystem change. Freshwater Biology 55: 487–499.

    Article  Google Scholar 

  • Sayer, C. D., A. Burgess, K. Kari, T. A. Davidson, S. Peglar, H. Yang & N. Rose, 2010b. Long-term dynamics of submerged macrophytes and algae in a small and shallow, eutrophic lake: implications for the stability of macrophyte-dominance. Freshwater Biology 55: 565–583.

    Article  CAS  Google Scholar 

  • Shapiro, J., V. Lamarra & M. Lynch, 1975. Biomanipulation: an ecosystem approach to lake restoration. In Brezonik, P. L. & J. L. Fox (eds), Proceedings symposium on water quality management through biological control, University of Florida: 85–96.

  • Smol, J. P., 1991. Are we building enough bridges between paleolimnology and aquatic ecology? Hydrobiologia 214: 201–206.

    Article  Google Scholar 

  • Søndergaard, M., E. Jeppesen, J. P. Jensen & S. L. Amsinck, 2005. Water Framework Directive: ecological classification of Danish lakes. Journal of Applied Ecology 42: 616–629.

    Article  Google Scholar 

  • Søndergaard, M., E. Jeppesen, T. L. Lauridsen, C. Skov, E. H. Van Nes, R. Roijackers, E. Lammens & R. Portielje, 2007. Lake restoration in Denmark and The Netherlands: successes, failures and long-term effects. Journal of Applied Ecology 44: 1095–1105.

    Article  Google Scholar 

  • Søndergaard, M., L. Liboriussen, A. R. Pedersen & E. Jeppesen, 2008. Lake restoration by fish removal: long-term effects in 36 Danish lakes. Ecosystems 11: 1291–1305.

    Article  Google Scholar 

  • Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnology and Oceanography 29: 472–486.

    Article  Google Scholar 

  • Vadeboncoeur, Y., E. Jeppesen, J. Van der Zanden, H. Schierup, K. Christoffersen & D. M. Lodge, 2003. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography 48: 1408–1418.

    Article  Google Scholar 

  • Vandekerkhove, J., S. Declerck, E. Jeppesen, J. Conde-Porcuna, L. Brendonck & L. De Meester, 2005. Dormant propagule banks integrate spatio-temporal heterogeneity in cladoceran communities. Oecologia 142: 109–116.

    Article  PubMed  Google Scholar 

  • Verschuren, D. & L. F. Marnell, 1997. Fossil zooplankton and the historical status of Westslope cutthroat trout in a headwater lake of Glacier National Park, Montana. Transactions of the American Fisheries Society 126: 21–34.

    Article  Google Scholar 

  • Verschuren, D., C. Cocquyt, J. Tibby, C. N. Roberts & P. R. Leavitt, 1999a. Long-term dynamics of algal and invertebrate communities in a fluctuating tropical soda lake. Limnology and Oceanography 44: 1216–1231.

    Article  Google Scholar 

  • Verschuren, D., J. Tibby, P. R. Leavitt & C. N. Roberts, 1999b. The environmental history of a climate-sensitive lake in the former ‘White Highlands’ of central Kenya. Ambio 28: 494–501.

    Google Scholar 

  • Verschuren, D., J. Tibby, K. Sabbe & C. N. Roberts, 2000. Effects of lake level, salinity and substrate on the invertebrate community of a fluctuating tropical lake. Ecology 81: 164–182.

    Article  Google Scholar 

  • Whiteside, M. C., 1970. Danish chydorid Cladocera: modern ecology and core studies. Ecological Monographs 40: 79–132.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank A.M. Poulsen for editing the manuscript. This project was supported by the EU FP-7 Theme 6 projects WISER (Water bodies in Europe: Integrative Systems to assess Ecological status and Recovery, Contract No.: 226273) and REFRESH (Adaptive strategies to Mitigate the Impacts of Climate Change on European Freshwater Ecosystems, Contract No.: 244121), ‘CLEAR’ (a Villum Kann Rasmussen Centre of Excellence Project), The Research Council for Nature and Universe (272-08-0406), and by the Estonian target funding projects SF0170006s08 and SF0170011s08. TD's contribution was supported by the Marie Curie Intra European Fellowship no. 255180 (PRECISE). The authors are also grateful to Catherine Duigan from the Countryside Commission for Wales (CCW) for commissioning the work on Kenfig Pool. This is a Galathea 3 expedition article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Jeppesen.

Additional information

Guest editors: H. Eggermont & K. Martens / Cladocera as indicators of environmental change

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeppesen, E., Nõges, P., Davidson, T.A. et al. Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676, 279–297 (2011). https://doi.org/10.1007/s10750-011-0831-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0831-0

Keywords

Navigation