Skip to main content
Log in

The Rock–Water–Ice Topographic Gravity Field Model RWI_TOPO_2015 and Its Comparison to a Conventional Rock-Equivalent Version

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

RWI_TOPO_2015 is a new high-resolution spherical harmonic representation of the Earth’s topographic gravitational potential that is based on a refined Rock–Water–Ice (RWI) approach. This method is characterized by a three-layer decomposition of the Earth’s topography with respect to its rock, water, and ice masses. To allow a rigorous separate modeling of these masses with variable density values, gravity forward modeling is performed in the space domain using tesseroid mass bodies arranged on an ellipsoidal reference surface. While the predecessor model RWI_TOPO_2012 was based on the \(5'\times 5'\) global topographic database DTM2006.0 (Digital Topographic Model 2006.0), the new RWI model uses updated height information of the \(1'\times 1'\) Earth2014 topography suite. Moreover, in the case of RWI_TOPO_2015, the representation in spherical harmonics is extended to degree and order 2190 (formerly 1800). Beside a presentation of the used formalism, the processing for RWI_TOPO_2015 is described in detail, and the characteristics of the resulting spherical harmonic coefficients are analyzed in the space and frequency domain. Furthermore, this paper focuses on a comparison of the RWI approach to the conventionally used rock-equivalent method. For this purpose, a consistent rock-equivalent version REQ_TOPO_2015 is generated, in which the heights of water and ice masses are condensed to the constant rock density. When evaluated on the surface of the GRS80 ellipsoid (Geodetic Reference System 1980), the differences of RWI_TOPO_2015 and REQ_TOPO_2015 reach maximum amplitudes of about 1 m, 50 mGal, and 20 mE in terms of height anomaly, gravity disturbance, and the radial–radial gravity gradient, respectively. Although these differences are attenuated with increasing height above the ellipsoid, significant magnitudes can even be detected in the case of the satellite altitudes of current gravity field missions. In order to assess their performance, RWI_TOPO_2015, REQ_TOPO_2015, and RWI_TOPO_2012 are validated against independent gravity information of current global geopotential models, clearly demonstrating the attained improvements in the case of the new RWI model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abd-Elmotaal H, Kühtreiber N (2014) The effect of DHM resolution in computing the topographic-isostatic harmonic coefficients within the window technique. Stud Geophys Geod 58(1):41–55. doi:10.1007/s11200-012-0231-6

    Article  Google Scholar 

  • Abd-Elmotaal H, Seitz K, Abd-Elbaky M, Heck B (2014) Comparison among three harmonic analysis techniques on the sphere and the ellipsoid. J Appl Geodesy 8(1):1–19. doi:10.1515/jag-2013-0008

    Article  Google Scholar 

  • Abd-Elmotaal H, Seitz K, Abd-Elbaky M, Heck B (2015) Tailored reference geopotential model for Africa. International association of geodesy symposia, vol 143. Springer, Berlin, pp 383–390. doi:10.1007/1345_2015_84

  • Anderson EG (1976) The effect of topography on solutions of Stokes’ problem. Unisurv S-14, Rep, School of Surveying, University of New South Wales, Australia

  • Balmino G, Vales N, Bonvalot S, Briais A (2012) Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies. J Geodesy 86(7):499–520. doi:10.1007/s00190-011-0533-4

    Article  Google Scholar 

  • Bamber JL, Griggs JA, Hurkmans RTWL, Dowdeswell JA, Gogineni SP, Howat I, Mouginot J, Paden J, Palmer S, Rignot E, Steinhage D (2013) A new bed elevation dataset for Greenland. Cryosphere 7(2):499–510. doi:10.5194/tc-7-499-2013

    Article  Google Scholar 

  • Baran I, Kuhn M, Claessens SJ, Featherstone WE, Holmes SA, Vaníček P (2006) A synthetic Earth gravity model designed specifically for testing regional gravimetric geoid determination algorithms. J Geodesy 80(1):1–16. doi:10.1007/s00190-005-0002-z

    Article  Google Scholar 

  • Barthelmes F (2013) Definition of functionals of the geopotential and their calculation from spherical harmonic models. Scientific technical Rep STR09/02, German Research Centre for Geosciences (GFZ), Potsdam, Germany

  • Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B, Depner J, Fabre D, Factor J, Ingalls S, Kim SH, Ladner R, Marks K, Nelson S, Pharaoh A, Trimmer R, von Rosenberg J, Wallace G, Weatherall P (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar Geod 32(4):355–371. doi:10.1080/01490410903297766

    Article  Google Scholar 

  • Bouman J, Ebbing J, Meekes S, Fattah RA, Fuchs M, Gradmann S, Haagmans R, Lieb V, Schmidt M, Dettmering D, Bosch W (2015) GOCE gravity gradient data for lithospheric modeling. Int J Appl Earth Obs Geoinf 35(Part A):16–30. doi:10.1016/j.jag.2013.11.001

  • Bouman J, Ebbing J, Fuchs M, Sebera J, Lieb V, Szwillus W, Haagmans R, Novák P (2016) Reference frame transformation of satellite gravity gradients and topographic mass reduction. Nat Sci Rep 6:21050. doi:10.1038/srep21050

    Article  Google Scholar 

  • Brockmann JM, Zehentner N, Höck E, Pail R, Loth I, Mayer-Gürr T, Schuh WD (2014) EGM_TIM_RL05: an independent geoid with centimeter accuracy purely based on the GOCE mission. Geophys Res Lett 41(22):8089–8099. doi:10.1002/2014GL061904

    Article  Google Scholar 

  • Claessens SJ, Hirt C (2013) Ellipsoidal topographic potential: new solutions for spectral forward gravity modeling of topography with respect to a reference ellipsoid. J Geophys Res 118(11):5991–6002. doi:10.1002/2013JB010457

    Article  Google Scholar 

  • Ebbing J, Braitenberg C, Götze HJ (2001) Forward and inverse modelling of gravity revealing insight into crustal structures of the Eastern Alps. Tectonophysics 337(3–4):191–208. doi:10.1016/S0040-1951(01)00119-6

    Article  Google Scholar 

  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank E, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45: RG2004. doi:10.1029/2005RG000183

  • Fecher T, Pail R, Gruber T (2015) Global gravity field modeling based on GOCE and complementary gravity data. Int J Appl Earth Obs Geoinf 35(Part A):120–127. doi:10.1016/j.jag.2013.10.005

    Article  Google Scholar 

  • Fecher T, Pail R, Gruber T, the GOCO Project Team (2016) The combined gravity field model GOCO05c. EGU General Assembly 2016, Geophys Res Abstracts, vol 18, EGU2016-7696

  • Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Report 355, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, USA, p 133

  • Forsberg R, Tscherning CC (1997) Topographic effects in gravity field modelling for BVP. In: Sansó F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter geoid. Lecture notes in Earth sciences, vol 65. Springer, Berlin, pp 239–272. doi:10.1007/BFb0011707

  • Fretwell P, Pritchard HD, Vaughan DG, Bamber JL, Barrand NE, Bell R, Bianchi C, Bingham RG, Blankenship DD, Casassa G, Catania G, Callens D, Conway H, Cook AJ, Corr HFJ, Damaske D, Damm V, Ferraccioli F, Forsberg R, Fujita S, Gim Y, Gogineni P, Griggs JA, Hindmarsh RCA, Holmlund P, Holt JW, Jacobel RW, Jenkins A, Jokat W, Jordan T, King EC, Kohler J, Krabill W, Riger-Kusk M, Langley KA, Leitchenkov G, Leuschen C, Luyendyk BP, Matsuoka K, Mouginot J, Nitsche FO, Nogi Y, Nost OA, Popov SV, Rignot E, Rippin DM, Rivera A, Roberts J, Ross N, Siegert MJ, Smith AM, Steinhage D, Studinger M, Sun B, Tinto BK, Welch BC, Wilson D, Young DA, Xiangbin C, Zirizzotti A (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7(1):375–393. doi:10.5194/tc-7-375-2013

    Article  Google Scholar 

  • Grombein T, Seitz K, Heck B (2010) Modelling topographic effects in GOCE gravity gradients. GEOTECHNOLOGIEN Sci Rep 17:84–93. doi:10.2312/GFZ.gt.17.13

    Google Scholar 

  • Grombein T, Seitz K, Heck B (2011) Smoothing GOCE gravity gradients by means of topographic-isostatic reductions. In: Proceedings of the 4th International GOCE user workshop, ESA Publication SP-696, ESA/ESTEC

  • Grombein T, Seitz K, Heck B (2013) Optimized formulas for the gravitational field of a tesseroid. J Geodesy 87(7):645–660. doi:10.1007/s00190-013-0636-1

    Article  Google Scholar 

  • Grombein T, Luo X, Seitz K, Heck B (2014a) A wavelet-based assessment of topographic-isostatic reductions for GOCE gravity gradients. Surv Geophy 35(4):959–982. doi:10.1007/s10712-014-9283-1

    Article  Google Scholar 

  • Grombein T, Seitz K, Heck B (2014b) Topographic-isostatic reduction of GOCE gravity gradients. In: Rizos C, Willis P (eds) Earth on the edge: science for a sustainable planet. International association of geodesy symposia, vol 139. Springer, Berlin, pp 349–356. doi:10.1007/978-3-642-37222-3_46

  • Gruber C, Novák P, Flechtner F, Barthelmes F (2014) Derivation of the topographic potential from global DEM models. In: Rizos C, Willis P (eds) Earth on the edge: science for a sustainable planet. International association of geodesy symposia, vol 139. Springer, Berlin, pp 535–542. doi:10.1007/978-3-642-37222-3_71

    Google Scholar 

  • Gutknecht BD, Götze HJ, Jahr T, Jentzsch G, Mahatsente R, Zeumann S (2014) Structure and state of stress of the Chilean subduction zone from terrestrial and satellite-derived gravity and gravity gradient data. Surv Geophy 35(6):1417–1440. doi:10.1007/s10712-014-9296-9

    Article  Google Scholar 

  • Heck B (2003) Rechenverfahren und Auswertemodelle der Landesvermessung. Klassische und moderne Methoden, 3rd edn. Wichmann, Heidelberg

  • Heck B, Seitz K (2007) A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J Geodesy 81(2):121–136. doi:10.1007/s00190-006-0094-0

    Article  Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. WH Freeman & Co., San Francisco

    Google Scholar 

  • Hirt C, Kuhn M (2012) Evaluation of high-degree series expansions of the topographic potential to higher-order powers. J Geophys Res 117:B12407. doi:10.1029/2012JB009492

    Google Scholar 

  • Hirt C, Rexer M (2015) Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models—available as gridded data and degree-10,800 spherical harmonics. Int J Appl Earth Obs Geoinf 39:103–112. doi:10.1016/j.jag.2015.03.001

  • Hirt C, Kuhn M, Featherstone WE, Göttl F (2012) Topographic/isostatic evaluation of new-generation GOCE gravity field models. J Geophys Res 117:B05407. doi:10.1029/2011JB008878

  • Hirt C, Rexer M, Claessens S (2015) Topographic evaluation of fifth-generation GOCE gravity field models—globally and regionally. Assessment of GOCE geopotential models, Newton’s Bull, no 5, pp 163–186

  • Holmes SA, Featherstone WE (2002) A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions. J Geodesy 76(5):279–299. doi:10.1007/s00190-002-0216-2

    Article  Google Scholar 

  • Holmes SA, Pavlis NK (2006) Spherical harmonic synthesis software harmonic_synth_v02.f. http://earth-info.nga.mil/GandG/wgs84/gravitymod/new_egm/new_egm.html

  • Holmes SA, Pavlis NK (2007) Some aspects of harmonic analysis of data gridded on the ellipsoid. In: Proceedings of the 1st international symposium IGFS. Harita Dergisi, Special Issue 18, pp 151–156

  • Janák J, Pitoňák M, Minarechová Z (2014) Regional quasigeoid from GOCE and terrestrial measurements. Stud Geophys Geod 58(4):626–649. doi:10.1007/s11200-013-0543-1

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4. International Centre for Tropical Agriculture. http://srtm.csi.cgiar.org

  • Jekeli C (1988) The exact transformation between ellipsoidal and spherical harmonic expansions. Manuscr Geod 13:106–113

    Google Scholar 

  • Kuhn M, Featherstone WE (2005) Construction of a synthetic Earth gravity model by forward gravity modelling. In: Sansò F (ed) A window on the future of geodesy. International association of geodesy symposia, vol 128. Springer, Berlin, pp 350–355. doi:10.1007/3-540-27432-4_60

  • Kuhn M, Seitz K (2005) Comparison of Newton’s integral in the space and frequency domains. In: Sansò F (ed) A window on the future of geodesy. International association of geodesy symposia, vol 128. Springer, Berlin, pp 386–391. doi:10.1007/3-540-27432-4_66

  • Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM 96. NASA Goddard Space Flight Center, Greenbelt, USA

    Google Scholar 

  • Mayer-Gürr T, Rieser D, Höck E, Brockmann JM, Schuh WD, Krasbutter I, Kusche J, Maier A, Krauss S, Hausleitner W, Baur O, Jäggi A, Meyer U, Prange L, Pail R, Fecher T, Gruber T (2012) The new combined satellite only model GOCO03s. Paper presented at the Int Symposium on Gravity, Geoid and Height Systems GGHS 2012, Venice, Italy

  • Moritz H (1980) Geodetic reference system 1980. Bull Géod 54(3):395–405. doi:10.1007/BF02521480

    Article  Google Scholar 

  • Nagy D, Papp G, Benedek J (2000) The gravitational potential and its derivatives for the prism. J Geodesy 74(7–8):552–560. doi:10.1007/s001900000116

    Article  Google Scholar 

  • Novák P, Tenzer R (2013) Gravitational gradients at satellite altitudes in global geophysical studies. Surv Geophys 34(5):653–673. doi:10.1007/s10712-013-9243-1

    Article  Google Scholar 

  • Novák P, Kern M, Schwarz KP, Heck B (2003) Evaluation of band-limited topographical effects in airborne gravimetry. J Geodesy 76(11–12):597–604. doi:10.1007/s00190-002-0282-5

    Google Scholar 

  • Omang DOC, Forsberg R (2000) How to handle topography in practical geoid determination: three examples. J Geodesy 74(6):458–466. doi:10.1007/s001900000107

    Article  Google Scholar 

  • Pavlis NK, Factor JK, Holmes SA (2007) Terrain-related gravimetric quantities computed for the next EGM. In: Proceedings of the 1st international symposium IGFS. Harita Dergisi, Special Issue 18, pp 318–323

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008. J Geophys Res 117:B04406. doi:10.1029/2011JB008916

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2013) Correction to “The development and evaluation of the Earth gravitational model 2008 (EGM2008)”. J Geophys Res 118(5):2633. doi:10.1002/jgrb.50167

    Article  Google Scholar 

  • Pitonák M, Šprlák M, Hamácková E, Novák P (2016) Regional recovery of the disturbing gravitational potential by inverting satellite gravitational gradients. Geophys J Int 205(1):89–98. doi:10.1093/gji/ggw008

    Article  Google Scholar 

  • Rummel R, Rapp RH, Sünkel H, Tscherning CC (1988) Comparisons of global topographic/isostatic models to the Earth’s observed gravity field. Report 388, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, USA, 33 pp

  • Rummel R, Yi W, Stummer C (2011) GOCE gravitational gradiometry. J Geodesy 85(11):777–790. doi:10.1007/s00190-011-0500-0

    Article  Google Scholar 

  • Seitz K, Heck B (1991) Harmonic analysis on the sphere. Internal report, Geodetic Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany, 18 pp

  • Sneeuw N (1994) Global spherical harmonic analysis by least-squares and numerical quadrature methods in historical perspective. Geophys J Int 118(3):707–716. doi:10.1111/j.1365-246X.1994.tb03995.x

    Article  Google Scholar 

  • Tenzer R, Gladkikh V, Novák P, Vajda P (2012) Spatial and spectral analysis of refined gravity data for modelling the crust-mantle interface and mantle-lithosphere structure. Surv Geophy 33(5):817–839. doi:10.1007/s10712-012-9173-3

    Article  Google Scholar 

  • Thong NC (1989) Simulation of gradiometry using the spheroidal harmonic model of the gravitational field. Manuscr Geod 14(6):404–417

    Google Scholar 

  • Tscherning CC (1985) On the long-wavelength correlation between gravity and topography. In: Proceedings of the 5th international symposium geodesy and physics of the Earth, pp 134–142

  • Tsoulis D, Kuhn M (2007) Recent developments in synthetic Earth gravity models in view of the availability of digital terrain and crustal databases of global coverage and increased resolution. In: Proceedings of the 1st International Symposium IGFS. Harita Dergisi, Special Issue 18, pp 354–359

  • Tsoulis D, Patlakis K (2013) A spectral assessment review of current satellite-only and combined Earth gravity models. Rev Geophys 51(2):186–243. doi:10.1002/rog.20012

    Article  Google Scholar 

  • Wieczorek MA (2007) Gravity and topography of the terrestrial planets. Treatise Geophys 10:165–206. doi:10.1016/B978-044452748-6.00156-5

    Article  Google Scholar 

  • Wild-Pfeiffer F (2008) A comparison of different mass elements for use in gravity gradiometry. J Geodesy 82(10):637–653. doi:10.1007/s00190-008-0219-8

    Article  Google Scholar 

  • Wittwer T, Klees R, Seitz K, Heck B (2008) Ultra-high degree spherical harmonic analysis and synthesis using extended-range arithmetic. J Geodesy 82(4):223–229. doi:10.1007/s00190-007-0172-y

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by the German Research Foundation (DFG) under Grant Number HE1433/20-2. Furthermore, we would like to thank Christian Hirt and Sten Claessens for valuable discussions. The Steinbuch Centre for Computing at the Karlsruhe Institute of Technology is acknowledged for the allocation of computing time on the high-performance parallel computer system HC3. Finally, Dimitrios Tsoulis and one anonymous reviewer as well as the Editor-in-Chief are acknowledged for their valuable comments, which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Grombein.

Appendix

Appendix

In addition to the investigations for the gravity disturbance \(\delta g\) as presented in Sect. 5, this appendix provides further results in the case of the height anomaly \(\zeta \) (Eq. (41)) and the gravity gradient \(M_{33}\) (Eq. (43)). In Figs. 18 and 19, the topographic signal of RWI_TOPO_2015, RWI_TOPO_2015_Rock, RWI_TOPO_2015_Water, and RWI_TOPO_2015_Ice is plotted in terms of \(\zeta \) and \(M_{33}\), respectively, while corresponding statistics are presented in Tables 10 and 11. For the comparison of RWI_TOPO_2015 to RWI_TOPO_2012 and REQ_TOPO_2015, Figs. 20 and 21 show differences in terms of \(\zeta \) and \(M_{33}\), respectively. Corresponding statistics for these cases can be found in Tables 12, 13, 14 and 15.

Table 10 Statistics of the RWI_TOPO_2015 topographic signal and its rock, water, and ice proportions in terms of height anomalies \(\zeta \) evaluated on the surface of the GRS80 ellipsoid
Table 11 Statistics of the RWI_TOPO_2015 topographic signal and its rock, water, and ice proportions in terms of the gravity gradient \(M_{33}\) evaluated on a spherical grid at a mean GOCE satellite altitude (\(254.9\,\text {km}\))
Table 12 Statistics of the difference of RWI_TOPO_2015 and RWI_TOPO_2012 in terms of height anomalies \(\zeta \) evaluated on the surface of the GRS80 ellipsoid
Table 13 Statistics of the difference of the RWI_TOPO_2015 and REQ_TOPO_2015 topographic signal and their water and ice proportions in terms of height anomalies \(\zeta \) evaluated on the surface of the GRS80 ellipsoid
Table 14 Statistics of the difference of RWI_TOPO_2015 and RWI_TOPO_2012 in terms of the gravity gradient \(M_{33}\) evaluated on a spherical grid at a mean GOCE satellite altitude (\(254.9\,\text {km}\))
Table 15 Statistics of the difference of the RWI_TOPO_2015 and REQ_TOPO_2015 topographic signal and their water and ice proportions in terms of the gravity gradient \(M_{33}\) evaluated on a spherical grid at a mean GOCE satellite altitude (\(254.9\,\text {km}\))
Fig. 18
figure 18

Topographic signal of a RWI_TOPO_2015, b RWI_TOPO_2015_Rock, c RWI_TOPO_2015_Water, and d RWI_TOPO_2015_Ice in terms of height anomalies \(\zeta \) evaluated on the surface of the GRS80 ellipsoid. Robinson projection centered at \(0^\circ \) longitude

Fig. 19
figure 19

Topographic signal of a RWI_TOPO_2015, b RWI_TOPO_2015_Rock, c RWI_TOPO_2015_Water, and d RWI_TOPO_2015_Ice in terms of the gravity gradient \(M_{33}\) evaluated on a spherical grid at a mean GOCE satellite altitude (\(254.9\,\text {km}\)). Robinson projection centered at \(0^\circ \) longitude

Fig. 20
figure 20

Difference of RWI_TOPO_2015 to a RWI_TOPO_2012 and b REQ_TOPO_2015 in terms of height anomalies \(\zeta \) evaluated on the surface of the GRS80 ellipsoid. Robinson projection centered at \(0^\circ \) longitude

Fig. 21
figure 21

Difference of RWI_TOPO_2015 to a RWI_TOPO_2012 and b REQ_TOPO_2015 in terms of the gravity gradient \(M_{33}\) evaluated on a spherical grid at a mean GOCE satellite altitude (\(254.9\,\text {km}\)). Robinson projection centered at \(0^\circ \) longitude

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grombein, T., Seitz, K. & Heck, B. The Rock–Water–Ice Topographic Gravity Field Model RWI_TOPO_2015 and Its Comparison to a Conventional Rock-Equivalent Version. Surv Geophys 37, 937–976 (2016). https://doi.org/10.1007/s10712-016-9376-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-016-9376-0

Keywords

Navigation