Skip to main content
Log in

An integrated workflow for characterizing gas potential: Axios-Thermaikos basin (Greece)

  • Research Article - Applied Geophysics
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The Axios-Thermaikos basin in northern Greece is a sedimentary composite depocenter that developed tectonically during the Neogene. It has been considered promising for hydrocarbon resources, with a proven offshore gas field. Several geological and geophysical surveys, including drilling, were conducted in previous decades. However, a complete model of the basin subsurface has yet to be constructed. This paper seeks to understand the hydrocarbon prospectivity of the onshore Axios-Thermaikos basin by analyzing various geophysical (gravity, magnetic, seismic reflection) data and integrating the geophysical model with other available data. Our approach started with a qualitative analysis of the gravity and magnetic data to extract the structural and lithological trends controlling the basin formation and development. Magnetic data were further used to map the interface between the sedimentary pile and the basement. Seismic data were interpreted using different attributes and mapped in detail the geologic contacts and the tectonic regime of the basin. The density variations in depth were investigated using two-dimensional forward modeling constrained by seismic data. As a result, the 2D gravity model displays the interfaces between the formations and the main seismic-scale faults. Based on the seismic and stratigraphic data from wells, preliminary three-dimensional models were built showing the stratigraphic and tectonic regimes, including the presence of structural hydrocarbon traps, and the different depositional environments that have acted in the basin through time. The mapped tectonic structures in the onshore Axios-Thermaikos basin might also be useful for other activities of economic importance, such as gas storage and CO2 sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The seismic and borehole data used in this work are available from the Hellenic Hydrocarbons and Energy Resources Management Company. Restrictions apply to their availability, and they were used under license for this study.

References

  • Al-Naji AJ, Ali NF (2015) The initial determining of hydrocarbon areas by world magnetic model WMM at Al Zubair City, South Iraq. IOSR J Appl Phys 7:31–36

    Google Scholar 

  • Al-Rahim AM, Lima WA (2016) Basin or intrusion, a new method to resolve non-uniqueness in gravity interpretation. Iraqi J Sci 57:480–491

    Google Scholar 

  • Alabert FG, Modot V (1992) Stochastic Models of Reservoir Heterogeneity: Impact on Connectivity and Average Permeabilities. In: SPE annual technical conference and exhibition? SPE-24893-MS. https://doi.org/10.2118/24893-MS

  • Alsadi HN (2017) Seismic hydrocarbon exploration. Springer International Publishing, Cham

    Book  Google Scholar 

  • Alves TM, Omosanya K, Gowling P (2015) Volume rendering of enigmatic high-amplitude anomalies in southeast Brazil: a workflow to distinguish lithologic features from fluid accumulations. Interpretation 3:A1–A14. https://doi.org/10.1190/INT-2014-0106.1

    Article  Google Scholar 

  • Ashadi AL, Martinez Y, Kirmizakis P, Hanstein T, Xu X, Khogali A, Paembonan A, AlShaibani A, Al-Karnos A, Smirnov M, Strack K, Soupios P (2022) First high-power CSEM field test in Saudi Arabia. Minerals 12:1236. https://doi.org/10.3390/min12101236

    Article  CAS  Google Scholar 

  • Behrend D, Denker H, Schmidt K (1996) Digital gravity data sets for the Mediterranean Sea derived from available maps. BGI Bulletin d’ Information 78:31–39

    Google Scholar 

  • Benda L, Steffens P (1981) Aufbauy and Alter des Neogens von Katerini, Griechenland. Geol Jahrb 42:93–103

    Google Scholar 

  • Blakely R (1995) Potential theory in gravity & magnetic applications. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511549816

    Book  Google Scholar 

  • BP (2022) Statistical Review of World Energy, 71st edition

  • Brooks M, Ferentinos G (1980) Structure and evolution of the Sporadhes basin of the North Aegean trough, northern Aegean sea. Tectonophysics 68:15–30. https://doi.org/10.1016/0040-1951(80)90006-2

    Article  Google Scholar 

  • Brown AR (2011) Interpretation of Three-Dimensional Seismic Data. Am Assoc Pet Geol. https://doi.org/10.1306/M4271346

    Article  Google Scholar 

  • Casten U, Makris J (2001) Erkundung der Krustenstruktur von Kreta durch detaillierete Schwere-und Magnetfeldmessung-gen. Proj Rep DFG: Ca 83:8–1

    Google Scholar 

  • Chailas S, Tzanis A, Kranis H, Karmis P (2010) Compilation of a unified and homogeneous aeromagnetic map of the Greek mainland. Bull Geol Soc Greece 43(4):1919–1929. https://doi.org/10.12681/bgsg.11383

    Article  Google Scholar 

  • Chapin DA, Ander ME (1999) Applying Gravity in Petroleum Exploration. In: Beaumont EA, Foster NH (eds) Exploring for oil and gas traps. American Association of Petroleum Geologists, Tulsa. https://doi.org/10.1306/TrHbk624C16

    Chapter  Google Scholar 

  • Chavanidis K, Stampolidis A, Kirmizakis P, Tranos M, Fedi M, Pasteka R, Al-Ramadan K, Kaka S, Tsokas GN, Soupios P (2022) Gravity survey on the oil-bearing dammam dome (Eastern Saudi Arabia) and its implications. Remote Sens (basel) 14:1–16. https://doi.org/10.3390/rs14030735

    Article  Google Scholar 

  • Chen Q, Sidney S (1997) Seismic attribute technology for reservoir forecasting and monitoring. Lead Edge 16:445–448. https://doi.org/10.1190/1.1437657

    Article  CAS  Google Scholar 

  • Chopra S, Marfurt KJ (2007a) Volumetric curvature attributes add value to 3D seismic data interpretation. Lead Edge 26:856–867. https://doi.org/10.1190/1.2756864

    Article  Google Scholar 

  • Chopra S, Marfurt KJ (2007b) Seismic attributes for prospect identification and reservoir characterization. SEG Geophys Dev Ser. https://doi.org/10.1190/19781560801900

    Article  Google Scholar 

  • Dasgupta SN, Aminzadeh F (2013) Geophysics for Petroleum Engineers. In: Cubitt J (ed) Developments in Petroleum Science. Elsevier, Amsterdam, p 282. https://doi.org/10.1016/B978-0-12-375067-9.09978-2

    Chapter  Google Scholar 

  • Demirci İ, Gündoğdu NY, Candansayar ME, Soupios P, Vafidis A, Arslan H (2020) Determination and evaluation of salt water intrusion on bafra plain: joint interpretation of geophysical, hydrogeological and hydrochemical data. Pure Appl Geophys 177:5621–5640. https://doi.org/10.1007/s00024-020-02573-2

    Article  Google Scholar 

  • Deptuck ME, Sylvester Z, Pirmez C, O’Byrne C (2007) Migration–aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon, western Niger Delta slope. Mar Pet Geol 24:406–433. https://doi.org/10.1016/j.marpetgeo.2007.01.005

    Article  Google Scholar 

  • Deutsch CV (2006) A sequential indicator simulation program for categorical variables with point and block data: BlockSIS. Comput Geosci 32(10):1669–1681. https://doi.org/10.1016/j.cageo.2006.03.005

    Article  Google Scholar 

  • Downey MW (1994) Hydrocarbon Seal Rocks. In: Magoon LB, Dow WG (eds) The Petroleum System—From Source to Trap. American Association of Petroleum Geologists, pp 159–164. https://doi.org/10.1306/M60585C8

    Chapter  Google Scholar 

  • Eventov L (1997) Applications of magnetic methods in oil and gas exploration. Lead Edge 16:489–492. https://doi.org/10.1190/1.1437667

    Article  Google Scholar 

  • Fairhead JD (2016) Advances in Gravity and Magnetic Processing and Interpretation. EAGE Publications, Houten. https://doi.org/10.3997/9789462821750

    Book  Google Scholar 

  • Faugères L, Robert C (1976) Etude sedimentologique et mineralogique de deux forages du golfe thermaique (mer Egee). Géologie Méditerranéenne 3:209–218

    Article  Google Scholar 

  • Georgakopoulos A (2000) Lithology and stratigraphy of the Neogene Prinos-Kavala basin, Northern Greece. In: Koufos GD, Ioakim ChE (Eds.), Proceedings of the R.C.M.N.S. Interim Colloquium “Mediterranean Neogene Cyclostratigraphy in Marine-Continental Palaeoenvironments.” Geological Society of Greece, 79–84

  • Ghilardi M, Kunesch S, Styllas M, Fouache E (2008) Reconstruction of Mid-Holocene sedimentary environments in the central part of the Thessaloniki Plain (Greece), based on microfaunal identification, magnetic susceptibility and grain-size analyses. Geomorphology 97:617–630. https://doi.org/10.1016/j.geomorph.2007.09.007

    Article  Google Scholar 

  • Grigoriadis V (2009) Geodetical and Geophysical Approximation of Earth’s Gravity Field and Applications in Greece (PhD Thesis).In: Aristotle University of Thessaloniki, Thessaloniki, Greece

  • Hanafy SM, Soupios P, Stampolidis A, Koch CB, Al-Ramadan K, Al-Shuhail A, Solling T, Argadestya I (2021) Comprehensive Geophysical Study at Wabar Crater, Rub Al-Khali Desert Saudi Arabia. Earth Space Sci. https://doi.org/10.1029/2020EA001432

    Article  Google Scholar 

  • Harishidayat D, Al-Shuhail A, Randazzo G, Lanza S, Muzirafuti A (2022) Reconstruction of land and marine features by seismic and surface geomorphology techniques. Appl Sci 12:9611. https://doi.org/10.3390/app12199611

    Article  CAS  Google Scholar 

  • Harishidayat D, Omosanya KO, Johansen SE, Eruteya OE, Niyazi Y (2018) Morphometric analysis of sediment conduits on a bathymetric high: Implications for palaeoenvironment and hydrocarbon prospectivity. Basin Res 30:1015–1041. https://doi.org/10.1111/bre.12291

    Article  Google Scholar 

  • Hindle AD (1997) Petroleum migration pathways and charge concentration: a three-dimensional model. Am Assoc Pet Geol Bull 81:1451–1481

    CAS  Google Scholar 

  • Hinojosa-Prieto HR, Soupios P, Barsukov P (2021) Subsurface geological characterization of the late Neogene-Quaternary Argive Basin, Peloponnese, Greece using transient electromagnetic data and vintage stratigraphic logs. Geosciences (basel) 11:317. https://doi.org/10.3390/geosciences11080317

    Article  Google Scholar 

  • Institute of Geology and Mineral Exploration (IGME) (1983) Geological map of Greece. Int J Remote Sens 15(6):1251–1258

    Google Scholar 

  • Kalkreuth W, Kotis T, Papanikolaou C, Kokkinakis P (1991) The geology and coal petrology of a Miocene lignite profile at Meliadi Mine, Katerini, Greece. Int J Coal Geol 17:51–67

    Article  CAS  Google Scholar 

  • Kiomourtzi P, Pasadakis N, Zelilidis A (2008) Source rock and depositional environment study of three hydrocarbon fields in Prinos—Kavala basin (North Aegean). Open Pet Eng J 1:16–29

    Article  CAS  Google Scholar 

  • Kiriakidis LG (1985) Geophysical studies of the eastern margin of the Vardar zone in Central Macedonia, Greece (PhD Thesis). In: Aristotle University of Thessaloniki, Thessaloniki, Greece

  • Kiriakidis LG (1989) The Vardar ophiolite: a continuous belt under the Axios basin sediments. Geophys J Int 98(2):203–212. https://doi.org/10.1111/j.1365-246X.1989.tb03345.x

    Article  Google Scholar 

  • Kiswaka EB, Harishidayat D, Mshiu EE, Al-Shuhail A (2023) Architectural element variations across the offshore basin of Tanzania continental margin: influence of local factors in sedimentary processes and their implications for petroleum prospectivity. Mar Geophys Res 44(2):7. https://doi.org/10.1007/s11001-023-09518-z

    Article  Google Scholar 

  • Kotis T, Papanikolaou K (1999) Depositional environment of lignite bearing sediments in the Neogene basin of Moschopotamos Pieria, Greece. Bull Geol Soc Greece 33:17–28

    Google Scholar 

  • Koukouvelas IK, Aydin A (2002) Fault structure and related basins of the North Aegean Sea and its surroundings. Tectonics. https://doi.org/10.1029/2001TC901037

    Article  Google Scholar 

  • Ku CC, Sharp JA (1983) Werner deconvolution for automated magnetic interpretation and its refinement using Marquardt’s inverse modeling. Geophysics 48:754–774

    Article  Google Scholar 

  • Lagios E, Chailas S, Hipkin RG (1996) Newly compiled gravity and topographic data banks of Greece. Geophys J Int 126:287–290. https://doi.org/10.1111/j.1365-246X.1996.tb05287.x

    Article  Google Scholar 

  • Lagios E, Chailas S, Hipkin RG, Drakopoulos J (1994) Gravity and topographic data banks of Greece

  • Loukoyannakis MZ, Tsokas GN, Mountrakis D (1991) A geological model of the south-west sector of Axios basin as deduced by the interpretation of seismic reflection lines. Bull Geol Soc Greece 25:329–345

    Google Scholar 

  • Luo Y, Kelamis PG, Wang Y (2003) Simultaneous inversion of multiples and primaries: inversion versus subtraction. Lead Edge 22:814–891. https://doi.org/10.1190/1.1614151

    Article  Google Scholar 

  • Lykousis V, Karageorgis AP, Chronis GT (2005) Delta progradation and sediment fluxes since the last glacial in the Thermaikos Gulf and the Sporades Basin, NW Aegean Sea, Greece. Mar Geol 222–223:381–397

    Article  Google Scholar 

  • Makris J, Papoulia J, Yegorova T (2013) A 3-D density model of Greece constrained by gravity and seismic data. Geophys J Int 194:1–17. https://doi.org/10.1093/gji/ggt059

    Article  Google Scholar 

  • Makris J, Stavrou A (1984) Compilation of gravity maps of Greece. Hamburg, Germany

    Google Scholar 

  • Makrodimitras G, Nikitas A, Ktenas D, Maravelis AG, Rokana NM, Pasadakis N, Tartaras E, Stefatos A (2023) Cenozoic clastic deposits in the Thermaikos basin in Northern Greece and their reservoir potential. Geosciences 13:159. https://doi.org/10.3390/geosciences13060159

    Article  CAS  Google Scholar 

  • Maravelis AG, Bourli N, Vlachos E, Zelilidis A (2022) The Sedimentary Basins from the Miocene to the Present in Greece: examples for the Most Studied Basins from North Greece. In: Vlachos E (ed) Fossil Vertebrates of Greece, vol 1. Springer, Cham, pp 13–31

    Google Scholar 

  • Marfurt KJ (2018) Seismic attributes as the framework for data integration throughout the oilfield life cycle. Soc Explor Geophys. https://doi.org/10.1190/19781560803522

    Article  Google Scholar 

  • Martinez Y, Ashadi AL, Hinojosa HR, Soupios P, Strack K (2022) New High-Power Controlled Source Electromagnetic System for Geothermal Applications. In: Proceeding of the geothermal rise conference 2022. Nevada, USA

  • Mayall M, Jones E, Casey M (2006) Turbidite channel reservoirs—Key elements in facies prediction and effective development. Mar Pet Geol 23:821–841. https://doi.org/10.1016/j.marpetgeo.2006.08.001

    Article  Google Scholar 

  • McHargue T, Pyrcz MJ, Sullivan MD, Clark JD, Fildani A, Romans BW, Covault JA, Levy M, Posamentier HW, Drinkwater NJ (2011) Architecture of turbidite channel systems on the continental slope: patterns and predictions. Mar Pet Geol 28:728–743. https://doi.org/10.1016/j.marpetgeo.2010.07.008

    Article  Google Scholar 

  • Meissner R (1973) The “Moho” as a transition zone. Geophys Surv 1:195–216

    Article  Google Scholar 

  • Mercier J (1966) Étude géologique des zones internes des Héllénides en Macedoine centrale. Contribution à l’ étude du metamorphisme et de l’ evolution magmatique des zones internes des Héllénides. Ann Géol Pays Hellén 20:1–792

    Google Scholar 

  • Mercier JL, Sorel D, Vergely P, Simeakis K (1989) Extensional tectonic regimes in the Aegean Basins during the Cenozoic. Basin Res 2:49–71

    Article  Google Scholar 

  • Mertzanides Y, Kargiotis E, Mitropoulos A (2010) Geological and geophysical data of “Epsilon” field in Prinos oil basin. Bull Geol Soc Greece 43:2257–2264

    Article  Google Scholar 

  • Mitchum RM, Vail PR, Sangree JB (1977) Stratigraphic interpretation of seismic reflection patterns in depositional sequences. seismic stratigraphy—applications to hydrocarbon exploration. Am Assoc Petrol Geol 26:117–133

    Google Scholar 

  • Molnár K, Lahitte P, Dibacto S, Benkó Z, Agostini S, Döncző B, Ionescu A, Milevski I, Szikszai Z, Kertész Z, Temovski M (2021) The westernmost Late Miocene-Pliocene volcanic activity in the Vardar zone (North Macedonia). Int J Earth Sci 111:749–766. https://doi.org/10.1007/s00531-021-02153-2

    Article  CAS  Google Scholar 

  • Morelli C, Gantar G, Pisani M (1975a) Bathymetry, gravity and magnetism in the strait of Sicily and in the Ionian sea. Bollettino Di Geofisica Teorica Ed Applicata 17:39–58

    Google Scholar 

  • Morelli C, Pisani M, Gantar G (1975b) Geophysical studies in the Aegean Sea and in the Eastern Mediterranean. Bollettino Di Geofisica Teorica Ed Applicata 18:127–167

    Google Scholar 

  • Mountrakis D (2010) Geology and Geotectonic Evolution of Greece (in Greek). University Studio Press, Thessaloniki

    Google Scholar 

  • Mountrakis D, Tranos M, Papazachos C, Thomaidou E, Karagianni E, Vamvakaris D (2006) Neotectonic and seismological data concerning major active faults, and the stress regimes of Northern Greece. In: Robertson AHF, Mountrakis D (eds) Tectonic Development of the Eastern Mediterranean Region. Geological Society, London, pp 649–670

    Google Scholar 

  • Nabighian MN, Grauch VJS, Hansen RO, LaFehr TR, Li Y, Peirce JW, Phillips JD, Ruder ME (2005) The historical development of the magnetic method in exploration. Geophysics 70:1ND-Z113

    Google Scholar 

  • Omosanya KO, Harishidayat D, Marheni L, Johansen SE, Felix M, Abrahamson P (2016) Recurrent mass-wasting in the Sørvestsnaget Basin Southwestern Barents Sea: a test of multiple hypotheses. Mar Geol 376:175–193. https://doi.org/10.1016/j.margeo.2016.03.003

    Article  Google Scholar 

  • Panagopoulos G, Soupios P, Vafidis A, Manoutsoglou E (2021) Integrated use of well and geophysical data for constructing 3D geological models in shallow aquifers: a case study at the Tymbakion basin, Crete Greece. Environ Earth Sci. https://doi.org/10.1007/s12665-021-09461-5

    Article  Google Scholar 

  • Panagopoulos G, Vafidis A, Soupios P, Manoutsoglou E (2022) Α study on the gas-bearing miocene sediments of MESSARA Basin in Crete (Greece) by using seismic reflection, geochemical and petrophysical data. Arab J Sci Eng 47:7449–7465. https://doi.org/10.1007/s13369-022-06727-3

    Article  CAS  Google Scholar 

  • Pavlides S, Mountrakis D, Kilias A, Tranos M (1990) The role of strike-slip movements in the extensional area of the northern Aegean (Greece). Annales Tectonicae 4:196–211

    Google Scholar 

  • Pe-Piper G, Piper DJW (2007) Neogene backarc volcanism of the Aegean: New insights into the relationship between magmatism and tectonics. In: Beccaluva L, Bianchini G, Wilson M (eds) Cenozoic Volcanism in the Mediterranean Area. Geological Society of America. https://doi.org/10.1130/2007.2418(02)

    Chapter  Google Scholar 

  • Perez-Perez A, D’Onofrio L, Bosch M, Zapata E (2011) Association between magnetic susceptibilities and hydrocarbon deposits in the Barinas-Apure Basin, Venezuela. Geophysics 76:L35–L41. https://doi.org/10.1190/geo2010-0274.1

    Article  Google Scholar 

  • Peters LE, Anandakrishnan S, Alley RB, Voigt DE (2012) Seismic attenuation in glacial ice: a proxy for englacial temperature. J Geophys Res Earth Surf. https://doi.org/10.1029/2011JF002201

    Article  Google Scholar 

  • Posamentier HW, Kolla V (2003) Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. J Sediment Res 73:367–388. https://doi.org/10.1306/111302730367

    Article  Google Scholar 

  • Proedrou P, Papaconstantinou MC (2004) Prinos basin—a model for oil exploration. Bull Geol Soc Greece 36:327–333. https://doi.org/10.12681/bgsg.16675

    Article  Google Scholar 

  • Pyrcz MJ, Deutsch CV (2014) Geostatistical Reservoir Modeling. Oxford University Press, Jericho

    Google Scholar 

  • Roussos N (1993) The Epanomi Gas Field (Thessaloniki Area). An example of fractured reservoir. Bull Geol Soc Greece 28:507–523

    Google Scholar 

  • Salem A, Ali MY (2015) Mapping basement structures in the northwestern offshore of Abu Dhabi from high-resolution aeromagnetic data. Geophys Prospect 64:726–740. https://doi.org/10.1111/1365-2478.12266

    Article  Google Scholar 

  • Salem A, Green C, Ravat D, Singh KH, East P, Fairhead JD, Mogren S, Biegert E (2014) Depth to Curie temperature across the central Red Sea from magnetic data using the de-fractal method. Tectonophysics 624–625:75–86. https://doi.org/10.1016/j.tecto.2014.04.027

    Article  Google Scholar 

  • Salem A, Hofmann C, Ion D, Planchart C, Muzaiyen E, Khalil M (2020) Consideration of Al-Wajid graben tectono-stratigraphy by analysis of geophysical data, Saudi Arabia. J Appl Geophy 173:1–9. https://doi.org/10.1016/j.jappgeo.2020.103941

    Article  Google Scholar 

  • Salem A, Williams S, Fairhead JD, Ravat D, Smith R (2007) Tilt-depth method: a simple depth estimation method using first-order magnetic derivatives. Lead Edge 26(12):1502–1505. https://doi.org/10.1016/0306-4530(82)90009-9

    Article  Google Scholar 

  • Shekarata CR, Mbede E, Boniface N, Mshiu EE, Kiswaka EB, Harishidayat D (2023) Basin development and petroleum prospectivity of the hybrid turbidite-contourite system in the east Pande area, offshore Tanzania. J Afr Earth Sc 208:105079. https://doi.org/10.1016/j.jafrearsci.2023.105079

    Article  Google Scholar 

  • Sivenas P, Ciobotariu S, Voudouris P (1997) Study of the onshore Thermaikos basin. HydroHellas report, Athens, Greece

  • Sodoudi F, Kind R, Hatzfeld D, Priestley K, Hanka W, Wylegalla K, Stavrakakis G, Vafidis A, Harjes H-P, Bohnhoff M (2006) Lithospheric structure of the Aegean obtained from P and S receiver functions. J Geophys Res 111:1–23. https://doi.org/10.1029/2005JB003932

    Article  CAS  Google Scholar 

  • Stampolidis A (2000) The Geomagnetic Field in Macedonia and Thrace and its Relation to the Geophysical and Geological Structure of the Area (PhD Thesis). In: Aristotle University of Thessaloniki, Thessaloniki, Greece

  • Strack K, Barajas-Olalde C, Davydycheva S, Martinez Y, Soupios P (2022) Surface-to-borehole array electromagnetics system: a case study for CO2 monitoring and the energy transition. In: Proceedings of the SPE annual technical conference and exhibition. Houston, TX, USA

  • Strack K, Davydycheva S, Hanstein T, Paembonan A, Soupios P (2023) CO2 Plume Imaging with CSEM: workflow and Calibration to Borehole Scale. In: Proceedings of the SPE/AAPG/SEG CCUS 2023 carbon capture, utilization, and storage. Houston, TX, USA

  • Sylvestrou I (2002) Stratigraphic, palaeontological and palaeogeographical study of the Neogene-Quaternary deposits of Katerini basin, Northern Greece (PhD Thesis). In: Aristotle University of Thessaloniki, Thessaloniki, Greece

  • Syrides G (1990) Lithostratigraphic, biostratigraphic and palaeogeographic study of the Neogene-Quaternary sedimentary deposits of Chalkidiki Peninsula, Macedonia, Greece (PhD Thesis). In: Aristotle University of Thessaloniki, Thessaloniki, Greece

  • Taner MT, Schuelke JS, O’Doherty R, Baysal E (1994) Seismic attributes revisited. In: SEG Technical Program 1994 Expanded Abstracts. Society of Exploration Geophysicists, pp 1104–1106. https://doi.org/10.1190/1.1822709

  • Tissot BP, Durand B, Espitalie J, Combaz A (1974) Influence of nature and diagenesis of organic matter in formation of petroleum. Am Assoc Pet Geol Bull 58:499–506

    CAS  Google Scholar 

  • Tranos MD (2009) Faulting of Lemnos Island; a mirror of faulting of the North Aegean Trough (Northern Greece). Tectonophysics 467:72–88. https://doi.org/10.1016/j.tecto.2008.12.018

    Article  Google Scholar 

  • Tranos MD (1998) Contribution to the study of the neotectonic deformation in the region of Central Macedonia and North Aegean (PhD Thesis). In: Aristotle University of Thessaloniki, Thessaloniki, Greece

  • Tranos MD, Kilias AA, Mountrakis DM (1999) Geometry and kinematics of the Tertiary post-metamorphic Circum Rhodope Belt Thrust System (CRBTS), Northern Greece. Bull Geol Soc Greece 33:5–16

    Google Scholar 

  • Tsokas G, Vafidis A, Georgakopoulos A, Papadopoulos Ch, Andronikidis N, Kritikakis G, Stampolidis A, Tsourlos P, Stamataki S (2013) Design of the geophysical and drilling survey of the onshore Thermaikos basin. In: Aristotle University of Thessaloniki and University of Crete report, Thessaloniki-Chania, Greece

  • Tsokas GN (1996) Interpretation of the Bouguer anomaly of Milos Island (Greece). J Volcanol Geoth Res 72:163–181

    Article  CAS  Google Scholar 

  • Tsokas GN, Hansen RO, Fytikas M, Vassilelis GD, Thanassoulas C (1995) Geological and geophysical study of the island of Kimolos (Greece) and geothermal implications. Geothermics 24:679–693

    Article  Google Scholar 

  • Vouvalidis K, Syrides G, Albanakis K (2005) Holocene morphology of the Thessaloniki Bay: impact of sea level rise. Z Geomorphol 137:147–158

    Google Scholar 

  • Wang J, Meng X, Guo L, Li F (2018) An empirical mode decomposition based noise cancelation method for potential field data along with a new stopping criterion. Arab J Geosci 11:418. https://doi.org/10.1007/s12517-018-3778-x

    Article  Google Scholar 

  • Werner S (1953) Interpretation of magnetic anomalies at sheet-like bodies. Sveriges Geologiska undersökning, ser. C 43

  • Zhang M, Qiao J, Zhao G, Lan X (2019) Regional gravity survey and application in oil and gas exploration in China. China Geol 2:382–390

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Deanship of the College of Petroleum Engineering and Geosciences and the Deanship of Research Oversight and Coordination of the King Fahd University of Petroleum and Minerals for technical and financial support. Also, the Greek Ministry of Environment and Energy and the Hellenic Hydrocarbons and Energy Resources Management Company for providing the seismic, borehole, and logging data, Vassilios Grigoriadis (Associate Professor at the Aristotle University of Thessaloniki, School of Rural and Surveying Engineering) and Petros Karmis (Head of Geophysics Department at the Hellenic Survey of Geology and Mineral Exploration) for providing the potential field data and for granting the permission to publish them. A special thank you goes to Markos Tranos (Professor at the Aristotle University of Thessaloniki, School of Geology) for revising the geologic and tectonic information in the manuscript and providing constructive feedback. Finally, Schlumberger is thanked for the donation of the Petrel software to the King Fahd University of Petroleum and Minerals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pantelis Soupios.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Edited by Prof. Dr. Liang Xiao (ASSOCIATE EDITOR) / Prof. Gabriela Fernández Viejo (CO-EDITOR-IN-CHIEF).

Appendices

Appendix

A. Additional figures

See Figs. 10 and 11

B. Additional equations

Equation 4

Instantaneous phase (Chopra and Marfurt 2007a, b):

$$\varphi \left(t\right)={\text{arctan}}\left(\frac{\mathfrak{I} F\left(t\right)}{\mathfrak{R} F\left(t\right)}\right) ,$$
(4)

where F(t) is the seismic trace, \(\mathfrak{R}\) F(t) is the real part of the seismic data and \(\mathfrak{I}\) F(t) is the imaginary part of the complex trace.

Equation 5

RMS amplitude (Chopra and Marfurt 2007a, b):

$${x}_{{\text{RMS}}}=\sqrt{\frac{1}{n}\sum_{i=1}^{n}{{x}_{i}}^{2}},$$
(5)

where x is the amplitude of the seismic trace and n is the total number of amplitudes (or traces).

Equation 6

Variance (Chopra and Marfurt 2007a, b):

$${\text{var}}\left(t,p,q\right)=\frac{1}{J}\sum_{j=1}^{J}{\left[{u}_{j}\left(t-p{x}_{j}-q{y}_{j}\right)-\langle u\left(t,p,q\right)\rangle \right]}^{2} ,$$

where J is number of the seismic traces, t, p, and q are the different variables of the seismic trace, and the mean \(\langle u\left(t,p,q\right)\rangle\) is defined as:

$$\langle u\left(t,p,q\right)\rangle \equiv \frac{1}{J}\sum_{j=1}^{J}{u}_{j}\left(t-p{x}_{j}-q{y}_{j}\right) .$$
(6)

Equation 7

Sequential indicators simulation (Alabert and Modot 1992; Deutsch 2006):

$$i~\left( {\varvec{u};k} \right) = ~~\left\{ {\begin{array}{*{20}c} {1,} & {{\text{if}}~{\text{category}}~k~{\text{prevails}}~{\text{at}}~{\text{location}}~u} \\ {0,} & {{\text{otherwise}}} \\ \end{array} } \right.,~~k = 1,~ \ldots ,~K.$$
(7)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavanidis, K., Harishidayat, D., Stampolidis, A. et al. An integrated workflow for characterizing gas potential: Axios-Thermaikos basin (Greece). Acta Geophys. (2024). https://doi.org/10.1007/s11600-024-01358-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11600-024-01358-8

Keywords

Navigation