Skip to main content
Log in

Using a wheat-rye amphihaploid population to map a rye gene responsible for dwarfness

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Gene identification in cross-pollinating plants such as rye can be arduous and time consuming because of the difficulties involved with genetic population construction. Here, we provide an alternative approach for the construction of mapping populations to rapidly map genes in cross-pollinated cereal rye. The aim of the present experiments was to genetically analyze the dwarf stature expressed by a germplasm accession of rye. The dwarf phenotype was reversible when the seedlings were exposed to gibberellic acid; the reductions in plant height occurred via reductions in cell size. A mapping population was constructed by generating a set of wheat-rye amphihaploids bred from a single rye plant heterozygous for the dwarfing gene(s). The dwarfness phenotype was expressed in the amphihaploid background, and segregation in the mapping population was consistent with the presence of a single gene. Using rye SSR markers, the gene responsible was located on chromosome arm 1RL, which is also the location of the known rye dwarfing gene Ddw3. This gene is valuable for dwarf breeding of wheat as well as rye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bauer E, Schmutzer T, Barilar I, Mascher M, Gundlach H, Martis MM, Twardziok SO, Hackauf B, Gordillo A, Wilde P, Schmidt M, Korzun V, Mayer KFX, Schmid K, Schön CC, Scholz U (2017) Towards a whole-genome sequence for rye (Secale cereale L.). Plant J 89:853–869

    Article  CAS  PubMed  Google Scholar 

  • Baum M, Appels R (1991) The cytogenetic and molecular architecture of chromosome 1R—one of the most widely utilized sources of alien chromatin in wheat varieties. Chromosoma 101:1–10

    Article  CAS  PubMed  Google Scholar 

  • Bolibok H, Gruszczyńska A, Hromada-Judycka A, Rakoczy-Trojanowska M (2007) The identification of QTLs associated with the in vitro response of rye (Secale cereale L.). Cell Mol Biol Lett 12:523–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Börner A (1991) Genetical studies of gibberellic acid insensitivity in rye (Secale cereale L.). Plant Breed 106:53–57

    Article  Google Scholar 

  • Börner A, Melz G (1988) Response of rye genotypes differing in plant height to exogenous gibberellic acid application. Arch Züch-tungsforsch 18:79–82

    Google Scholar 

  • Börner A, Korzun V, Voylokov AV, Worland AJ, Weber WE (2000) Genetic mapping of quantitative trait loci in rye (Secale cereal L.). Euphytica 116:203–209

    Article  Google Scholar 

  • Borojevic K, Borojevic K (2005) The transfer and history of “reduced height genes” (Rht) in wheat from Japan to Europe. J Hered 96:455–459

    Article  CAS  PubMed  Google Scholar 

  • Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K, Xiao J, Yu J, Ronald PC, Harrington SE, Second G, McCouch SR, Tanksley SD (1994) Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138:1251–1274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darvey NL, Gustafson JP (1975) Identification of rye chromosomes in wheat-rye addition lines and triticale by heterochromatin bands1. Crop Sci 15:239–243

    Article  Google Scholar 

  • Davis-Knight HR, Weightman RM (2008) The potential of triticale as a low input cereal for bioethanol production. Report 434. Home-Grown Cereals Authority, Caledonia House, London

  • Evans LT (1998) Feeding the ten billion: plants and population growth. Cambridge University Press, Cambridge

    Google Scholar 

  • Falke KC, Sušić Z, Hackauf B, Korzun V, Schondelmaier J, Wilde P, Wehling P, Wortmann H, Mank JR, van der Voort JR, Maurer HP, Miedaner T, Geiger HH (2008) Establishment of introgression libraries in hybrid rye (Secale cereale L.) from an Iranian primitive accession as a new tool for rye breeding and genomics. Theor Appl Genet 117:641–652

    Article  CAS  PubMed  Google Scholar 

  • Falke KC, Susić Z, Wilde P, Wortmann H, Möhring J, Piepho HP, Geiger HH, Miedaner T (2009) Testcross performance of rye introgression lines developed by marker-assisted backcrossing using an Iranian accession as donor. Theor Appl Genet 118:1225–1238

    Article  CAS  PubMed  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Geiger HH, Miedaner T (2009) Rye breeding. In: Carena MJ (ed) Cereals. Springer, New York, pp 157–181

    Chapter  Google Scholar 

  • Hackauf B, Wehling P (2002) Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed 121:17–25

    Article  CAS  Google Scholar 

  • Hackauf B, Wehling P (2003) Devolopment of microsatellite markers in rye: map construction. Plant Breed Seed Sci 48:143–151

    Google Scholar 

  • Hackauf B, Rudd S, van der Voort JR, Miedaner T, Wehling P (2009) Comparative mapping of DNA sequences in rye (Secale cereale L.) in relation to the rice genome. Theor Appl Genet 118:371–384

    Article  CAS  PubMed  Google Scholar 

  • Hackauf B, Bauer E, Korzun V, Miedaner T (2017a) Fine mapping of the restorer gene Rfp3 from an Iranian primitive rye (Secale cereale L.). Theor Appl Genet 130:1179–1189

    Article  CAS  PubMed  Google Scholar 

  • Hackauf B, Haffke S, Fromme FJ, Roux SR, Kusterer B, Musmann D, Kilian A, Miedaner T (2017b) QTL mapping and comparative genome analysis of agronomic traits including grain yield in winter rye. Theor Appl Genet 130:1801–1817

    Article  CAS  PubMed  Google Scholar 

  • Houchins K, O’Dell M, Flavell RB, Gustafson JP (1997) Cytosine methylation and nucleolar dominance in cereal hybrids. Mol Gen Genet 255:294–301

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (1999) Green revolution: preparing for the 21st century. Genome 42:646–655

    Article  CAS  PubMed  Google Scholar 

  • Korzun V, Börner A, Melz G (1996) RFLP mapping of the dwarf (Ddw1) and hairy peduncle (Hp) genes on chromosome 5 of rye (Secale cereale L.). Theor Appl Genet 92:1073–1077

    Article  CAS  PubMed  Google Scholar 

  • Kumlay AM, Baenziger PS, Gill KS, Shelton DR, Graybosch RA, Lukaszewski AJ, Wesenberg DM (2003) Understanding the effect of rye chromatin in bread wheat. Crop Sci 43:1643–1651

    Article  Google Scholar 

  • Lelley T, Eder C, Grausgruber H (2004) Influence of 1BL.1RS wheat-rye chromosome translocation on genotype by environment interaction. J Cereal Sci 39:313–320

    Article  CAS  Google Scholar 

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu DC, Yen C, Yang JL, Zheng YL, Lan XJ (1999) The chromosomal distribution of crossability genes in tetraploid wheat Triticum turgidum L. cv. Ailanmai native to Sichuan, China. Euphytica 108:79–82

    Article  Google Scholar 

  • Mago R, Miah H, Lawrence GJ, Wellings CR, Spielmeyer W, Bariana HS, Mclntosh RA, Pryor AJ, Ellis JG (2005) High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theor Appl Genet 112:41–50

    Article  CAS  PubMed  Google Scholar 

  • Martis MM, Zhou R, Haseneyer G, Schmutzer T, Vrána J, Kubaláková M, König S, Kugler KG, Scholz U, Hackauf B, Korzun V, Schön CC, Doležel J, Bauer E, Mayer KF, Stein N (2013) Reticulate evolution of the rye genome. Plant Cell 25:3685–3698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masojć P, Banek-Tabor A, Milczarski P, Twardowska M (2007) QTLs for resistance to preharvest sprouting in rye (Secale cereale L.). J Appl Genet 48:211–217

    Article  PubMed  Google Scholar 

  • Melz G (1989) Beiträge zur Genetik des Roggens (Secale cereale L.). Ph.D. thesis, Berlin

  • Mettin D, Bluthner WD, Schlegel G (1973) Additional evidence on spontaneous 1B/1R wheat-rye substitutions and translocations. In: Sears ER, Sears LMS (eds) Proceedings of the fourth international wheat genetics symposium alien genetic material, pp 179–184

  • Miedaner T, Glass C, Dreyer F, Wilde P, Wortmann H, Geiger HH (2000) Mapping of genes for male-fertility restoration in ‘Pampa’ CMS winter rye (Secale cereale L.). Theor Appl Genet 101:1226–1233

    Article  CAS  Google Scholar 

  • Miedaner T, Hübner M, Korzun V, Schmiedchen B, Bauer E, Haseneyer G, Wilde P, Reif JC (2012) Genetic architecture of complex agronomic traits examined in two testcross populations of rye (Secale cereale L.). BMC Genom 13:706

    Article  CAS  Google Scholar 

  • Miedaner T, Schwegler DD, Wilde P, Reif J (2014) Association between line per se and testcross performance for eight agronomic and quality traits in winter rye. Theor Appl Genet 127:33–41

    Article  PubMed  Google Scholar 

  • Milczarski P, Masojć P (2003) Interval mapping of genes controlling growth of rye plants. Plant Breed Seed Sci 48:135–142

    Google Scholar 

  • Milczarski P, Bolibok-Brągoszewska H, Myśków B, Stojałowski S, Heller-Uszyńska K, Góralska M, Brągoszewski P, Uszyński G, Kilian A, Rakoczy-Trojanowska M (2011) A high density consensus map of rye (Secale cereale L.) based on DArT markers. PLoS ONE 6(12):1–14

    Article  CAS  Google Scholar 

  • Myśków B, Hanek M, Banek-Tabor A, Maciorowski R, Stojałowski S (2014) The application of high-density genetic maps of rye for the detection of QTLs controlling morphological traits. J Appl Genet 55:15–26

    Article  PubMed  Google Scholar 

  • Oettler G (2005) The fortune of a botanical curiosity—triticale: past, present and future. J Agric Sci 143:329–346

    Article  Google Scholar 

  • Pfahler PL, Barnett RD, Blount AR (2001) Registration of FL-NSC Rye germplasm with short culm or straw length. Crop Sci 41:597-597

    Article  Google Scholar 

  • Ren TH, Yang ZJ, Yan BJ, Zhang HQ, Fu SL, Ren ZL (2009) Development and characterization of a new 1BL.1RS translocation line with resistance to stripe rust and powdery mildew of wheat. Euphytica 169:207–213

    Article  Google Scholar 

  • Ren TH, Chen F, Yan BJ, Zhang HQ, Ren ZL (2012) Genetic diversity of wheat-rye 1BL.1RS translocation lines derived from different wheat and rye sources. Euphytica 183:133–146

    Article  Google Scholar 

  • Riley R, Chapman V (1967) The inheritance in wheat of crossability with rye. Genet Res 9:259–267

    Article  Google Scholar 

  • Saal B, Wricke G (1999) Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42:964–972

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O (1996) Mass spectrometric sequencing of proteins silver–stained polyacrylamide gels. Anal Chem 68:850–858

    Article  CAS  PubMed  Google Scholar 

  • Stojałowski S, Myśków B, Hanek M (2015) Phenotypic effect and chromosomal localization of Ddw3, the dominant dwarf gene in rye (Secale cereale L.). Euphytica 201:43–52

    Article  CAS  Google Scholar 

  • Sun CQ, Chen FD, Teng NJ, Liu ZL, Fang WM, Hou XL (2010) Factors affecting seed set in the crosses between Dendranthema grandiflorum (Ramat.) Kitamura and its wild species. Euphytica 171:181–192

    Article  Google Scholar 

  • Tenhola-Roininen T (2009) Rye doubled haploids: production and use in mapping studies. Dissertation, Studies in Biological and Environmental Science, no. 198, University of Jyväskylä, Finland

  • Tenhola-Roininen T, Tanhuanpää P (2010) Tagging the dwarf gene Ddw1, in a rye population derived from doubled haploid parents. Euphytica 172:303–312

    Article  CAS  Google Scholar 

  • Tenhola-Roininen T, Kalendar R, Schulman AH, Tanhuanpää P (2011) A doubled haploid rye linkage map with a QTL affecting α-amylase activity. J Appl Genet 52:299–304

    Article  CAS  PubMed  Google Scholar 

  • Weipert D (1997) Processing performance of rye as compared to wheat. Cereal Foods World 42:706–712

    Google Scholar 

  • Würschum T, Liu G, Boeven PHG, Longin CFH, Mirdita V, Kazman E, Zhao Y, Reif JC (2018) Exploiting the Rht portfolio for hybrid wheat breeding. Theor Appl Genet. https://doi.org/10.1007/s00122-018-3088-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan Z, Liu D, Zhang L, Zhang L, Chen W, Yan Z, Zheng Y, Zhang H, Yen Y (2011) Mitotic illegitimate recombination is a mechanism for novel changes in high-molecular-weight glutenin subunits in wheat-rye hybrids. PLoS ONE 6(8):e23511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeller FJ, Hsam SLK (1996) Chromosomal location of a gene suppressing powdery mildew resistance genes Pm8 and Pm17 in common wheat (Triticum aestivum L. em. Thell.). Theor Appl Genet 93:38–40

    Article  CAS  PubMed  Google Scholar 

  • Zeller FJ, Sears ER, Sears LMS (1973) 1B/1R wheat-rye chromosome substitutions and translocations. In: Sears ER, Sears LMS (eds) Proceedings of the 4th international wheat genetics symposium. University of Missouri, Columbia, pp 209–222

  • Zheng YL, Luo MC, Ji Yan, Yang JL (1993) Studies of inheritance of the crossabiligy of a new material “J-11” of common wheat with rye. Acta Genet Sin 20:147–154

    Google Scholar 

Download references

Acknowledgements

We are grateful to Robert Koebner (smartenglish2008@gmail.com) for his help in improving the manuscript. We would also like to thank Dr. Bernd Hackauf and Peter Wehling, Federal Research Centre for Cultivated Plants Institute for Breeding Research on Agricultural Crops, Julius Kühn-Institut (JKI), Germany, for kindly providing the sequence information for the rye SSR markers. This research was financially supported by the Chinese National Natural Science Foundation (Grant Number 31771795) and the Sichuan Province Educational Commission’s Applied Basic Research Program (Grant Number 2017JY0142).

Author information

Authors and Affiliations

Authors

Contributions

SY, ZY and DL designed the study. SY, HZ, JY, YZ, LZ and XC created the mapping and verification population. SY, HZ and JY carried out molecular genotyping. SY, YJ and MH analyzed the data. SY, ZY and DL drafted the manuscript; LZ and SN participated in planning the study. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Dengcai Liu or Zhongwei Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that all experiments complied with the current laws of China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Zhu, H., Yu, J. et al. Using a wheat-rye amphihaploid population to map a rye gene responsible for dwarfness. Euphytica 214, 166 (2018). https://doi.org/10.1007/s10681-018-2247-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-018-2247-7

Keywords

Navigation