Skip to main content
Log in

Assessment of heavy metals and environmental stress conditions on the production potential of polyunsaturated fatty acids (PUFAs) in indigenous microalgae isolated from the Gulf of Mannar coastal waters

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study evaluated the effects of heavy metals, viz., lead, mercury, and cadmium, on growth, chlorophyll a, b, c, carotenoids, and PUFA content of marine microalgae Chlorella sp. and Cylindrotheca fusiformis. At 96-h exposure, the IC50 values for Hg2+, Pb2+, and Cd2+ were 0.85 mg/L, 2.4 mg/L, and 5.3 mg/L respectively, in Chlorella sp. In C. fusiformis, IC50 values for Hg2+, Pb2+, and Cd2+ were 0.5 mg/L, 1.2 mg/L, and 3 mg/L respectively. The pigment contents of both microalgae were significantly affected upon heavy metal exposure. In Chlorella sp. and C. fusiformis, the exposed concentrations of Hg2+ averagely decreased the PUFA content by 76.34% and 78.68%, respectively. Similarly, Pb2+-exposed concentrations resulted in 54.50% and 82.64% average reductions in PUFA content of Chlorella sp. and C. fusiformis, respectively. Cd2+-exposed concentrations showed 32.58% and 40.54% average reduction in PUFA content of Chlorella sp. and C. fusiformis, respectively. Among the environmental stress conditions, the dark treatment has increased total PUFA content by 6.63% in Chlorella sp. and 3.92% in C. fusiformis. It was observed that the 50% nitrogen starvation (two-stage) significantly improved the PUFA production from 26.47 ± 6.55% to 40.92 ± 10.74% in Chlorella sp. and from 11.23 ± 5.01 to 32.8 ± 14.17% in C. fusiformis. The toxicity for both microalgae was followed in the order Hg2+ > Pb2+ > Cd2+. Among the two species, Chlorella sp. has shown a high tolerance to heavy metals and can be effectively utilized in PUFA production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Abomohra, A.E.-F., El-Naggar, A. H., Alaswad, S. O., Elsayed, M., Li, M., & Li, W. (2020). Enhancement of biodiesel yield from a halophilic green microalga isolated under extreme hypersaline conditions through stepwise salinity adaptation strategy. Bioresource Technology, 310, 123462. https://doi.org/10.1016/j.biortech.2020.123462

    Article  PubMed  CAS  Google Scholar 

  • Achary, M. S., Satpathy, K. K., Panigrahi, S., Mohanty, A. K., Padhi, R. K., Biswas, S., Prabhu, R. K., Vijayalakshmi, S., & Panigrahy, R. C. (2017). Concentration of heavy metals in the food chain components of the nearshore coastal waters of Kalpakkam, southeast coast of India. Food Control, 72, 232–243.

    Article  CAS  Google Scholar 

  • Adhiya, J., Cai, X., Sayre, R. T., & Traina, S. J. (2002). Binding of aqueous cadmium by the lyophilized biomass of Chlamydomonas reinhardtii. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 210(1), 1–11. https://doi.org/10.1016/S0927-7757(02)00041-9

    Article  CAS  Google Scholar 

  • Aksu, Z. (1998). Biosorption of heavy metals by microalgae in batch and continuous systems. In Wastewater treatment with algae (pp. 37–53). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-10863-5

  • Aléman-Nava, G. S., Muylaert, K., Cuellar Bermudez, S. P., Depraetere, O., Rittmann, B., Parra-Saldívar, R., & Vandamme, D. (2017). Two-stage cultivation of Nannochloropsis oculata for lipid production using reversible alkaline flocculation. Bioresource Technology, 226, 18–23. https://doi.org/10.1016/j.biortech.2016.11.121

    Article  PubMed  CAS  Google Scholar 

  • Alishah Aratboni, H., Rafiei, N., Garcia-Granados, R., Alemzadeh, A., & Morones-Ramírez, J. R. (2019). Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microbial Cell Factories, 18, 1–17.

    Article  CAS  Google Scholar 

  • Alonso, D. L., Belarbi, E.-H., Fernández-Sevilla, J. M., Rodríguez-Ruiz, J., & Grima, E. M. (2000). Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum. Phytochemistry, 54(5), 461–471. https://doi.org/10.1016/S0031-9422(00)00084-4

    Article  PubMed  CAS  Google Scholar 

  • Álvarez, R., Del Hoyo, A., Díaz-Rodríguez, C., Coello, A. J., Del Campo, E. M., Barreno, E., Catalá, M., & Casano, L. M. (2015). Lichen rehydration in heavy metal-polluted environments: Pb modulates the oxidative response of both Ramalina farinacea Thalli and its isolated microalgae. Microbial Ecology, 69(3), 698–709. https://doi.org/10.1007/s00248-014-0524-0

    Article  PubMed  ADS  CAS  Google Scholar 

  • Amini Khoeyi, Z., Seyfabadi, J., & Ramezanpour, Z. (2012). Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella Vulgaris. Aquaculture International, 20(1), 41–49. https://doi.org/10.1007/s10499-011-9440-1

    Article  CAS  Google Scholar 

  • Anbuselvan, N., & Sridharan, M. (2018). Heavy metal assessment in surface sediments off Coromandel Coast of India: Implication on marine pollution. Marine Pollution Bulletin, 131, 712–726.

    Article  CAS  Google Scholar 

  • Arisekar, U., Jeya Shakila, R., Shalini, R., Jeyasekaran, G., Sivaraman, B., & Surya, T. (2021). Heavy metal concentrations in the macroalgae, seagrasses, mangroves, and crabs collected from the Tuticorin coast (Hare Island), Gulf of Mannar. South India. Marine Pollution Bulletin, 163, 111971. https://doi.org/10.1016/j.marpolbul.2021.111971

    Article  PubMed  CAS  Google Scholar 

  • Arora, N., Pienkos, P., Poluri, K., & Guarnieri, M. T. (2018) Leveraging algal omics to reveal potential targets for augmenting TAG accumulation. Biotechnology Advances, 36(4), 1274–1292. https://doi.org/10.1016/j.biotechadv.2018.04.005

  • Atikij, T., Syaputri, Y., Iwahashi, H., Praneenararat, T., Sirisattha, S., Kageyama, H., & Waditee-Sirisattha, R. (2019). Enhanced lipid production and molecular dynamics under salinity stress in green microalga Chlamydomonas reinhardtii (137C). Marine Drugs, 17(8), 484.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bai, X., Song, H., Lavoie, M., Zhu, K., Su, Y., Ye, H., Chen, S., Fu, Z., & Qian, H. (2016). Proteomic analyses bring new insights into the effect of a dark stress on lipid biosynthesis in Phaeodactylum tricornutum. Scientific Reports, 6(1), 25494.

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  • Bajguz, A. (2011). Suppression of Chlorella vulgaris growth by cadmium, lead, and copper stress and its restoration by endogenous brassinolide. Archives of Environmental Contamination and Toxicology, 60(3), Article 3. https://doi.org/10.1007/s00244-010-9551-0

  • Banfalvi, G., & Banfalvi, G. (2016). Biological membranes. Springer.

    Google Scholar 

  • Bao, B., Thomas-Hall, S. R., & Schenk, P. M. (2022). Fast-tracking isolation, identification and characterization of new microalgae for nutraceutical and feed applications. Phycology, 2(1), 86–107. https://doi.org/10.3390/phycology2010006

    Article  Google Scholar 

  • Barón-Sola, Á., Toledo-Basantes, M., Arana-Gandía, M., Martínez, F., Ortega-Villasante, C., Dučić, T., Yousef, I., & Hernández, L. E. (2021). Synchrotron radiation-Fourier transformed infrared microspectroscopy (μSR-FTIR) reveals multiple metabolism alterations in microalgae induced by cadmium and mercury. Journal of Hazardous Materials, 419, 126502. https://doi.org/10.1016/j.jhazmat.2021.126502

    Article  PubMed  CAS  Google Scholar 

  • Battah, M., El-Ayoty, Y., Abomohra, A.E.-F., El-Ghany, S. A., & Esmael, A. (2015). Effect of Mn2+, Co2+ and H2O2 on biomass and lipids of the green microalga Chlorella vulgaris as a potential candidate for biodiesel production. Annals of Microbiology, 65(1), 155–162.

    Article  CAS  Google Scholar 

  • Bernaerts, T. M., Gheysen, L., Kyomugasho, C., Kermani, Z. J., Vandionant, S., Foubert, I., Hendrickx, M. E., & Van Loey, A. M. (2018). Comparison of microalgal biomasses as functional food ingredients: Focus on the composition of cell wall related polysaccharides. Algal Research, 32, 150–161.

    Article  Google Scholar 

  • Büchel, C. (2003). Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. Biochemistry, 42(44), 13027–13034.

    Article  PubMed  Google Scholar 

  • Cabrita, M. T., Duarte, B., Gameiro, C., Godinho, R. M., & Caçador, I. (2018). Photochemical features and trace element substituted chlorophylls as early detection biomarkers of metal exposure in the model diatom Phaeodactylum tricornutum. Ecological Indicators, 95, 1038–1052. https://doi.org/10.1016/j.ecolind.2017.07.057

    Article  CAS  Google Scholar 

  • Capolino, E., Tredici, M., Pepi, M., & Baldi, F. (1997). Tolerance to mercury chloride in Scenedesmus strains. BioMetals, 10, 85–94.

    Article  PubMed  CAS  Google Scholar 

  • Chaffin, J. D., Mishra, S., Kuhaneck, R. M., Heckathorn, S. A., & Bridgeman, T. B. (2012). Environmental controls on growth and lipid content for the freshwater diatom, Fragilaria capucina: A candidate for biofuel production. Journal of Applied Phycology, 24(5), 1045–1051. https://doi.org/10.1007/s10811-011-9732-x

    Article  CAS  Google Scholar 

  • Chen, G., Jiang, Y., & Chen, F. (2008). Salt-induced alterations in lipid composition of diatom Nitzschia laevis (bacillariophyceae) under heterotrophic culture condition 1. Journal of Phycology, 44(5), 1309–1314. https://doi.org/10.1111/j.1529-8817.2008.00565.x

    Article  PubMed  CAS  Google Scholar 

  • Chen, M., Tang, H., Ma, H., Holland, T. C., Ng, K. S., & Salley, S. O. (2011). Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technology, 102(2), 1649–1655.

    Article  PubMed  CAS  Google Scholar 

  • Chen, B., Wan, C., Mehmood, M. A., Chang, J.-S., Bai, F., & Zhao, X. (2017). Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products–A review. Bioresource Technology, 244, 1198–1206. https://doi.org/10.1016/j.biortech.2017.05.170

    Article  PubMed  CAS  Google Scholar 

  • Chu, W.-L. (2012). Biotechnological applications of microalgae. International e-Journal of Science, Medicine & Education, 6(1), S24–S37.

    Article  Google Scholar 

  • Chua, E. T., Dal‘Molin, C., Thomas-Hall, S., Netzel, M. E., Netzel, G., & Schenk, P. M. (2020). Cold and dark treatments induce omega-3 fatty acid and carotenoid production in Nannochloropsis oceanica. Algal Research, 51, 102059. https://doi.org/10.1016/j.algal.2020.102059

    Article  Google Scholar 

  • Cid, Á., Prado, R., Rioboo, C., Suarez-Bregua, P., & Herrero, C. (2012).  Use of microalgae as biological indicators of pollution: Looking for new relevant cytotoxicity endpoints. In M. N. Johnsen (Ed.), Microalgae: Biotechnology, microbiology and energy (pp. 311–323). Nova Science Publishers.

  • Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48(6), 1146–1151.

    Article  CAS  Google Scholar 

  • Cui, Y., Thomas-Hall, S. R., & Schenk, P. M. (2019). Phaeodactylum tricornutum microalgae as a rich source of omega-3 oil: Progress in lipid induction techniques towards industry adoption. Food Chemistry, 297, 124937. https://doi.org/10.1016/j.foodchem.2019.06.004

    Article  PubMed  CAS  Google Scholar 

  • Dao, L., Beardall, J., & Heraud, P. (2017). Characterisation of Pb-induced changes and prediction of Pb exposure in microalgae using infrared spectroscopy. Aquatic Toxicology, 188, 33–42. https://doi.org/10.1016/j.aquatox.2017.04.006

    Article  PubMed  CAS  Google Scholar 

  • De Abreu, F. C. P., Da Costa, P. N. M., Brondi, A. M., Pilau, E. J., Gozzo, F. C., Eberlin, M. N., Trevisan, M. G., & Garcia, J. S. (2014). Effects of cadmium and copper biosorption on Chlorella vulgaris. Bulletin of Environmental Contamination and Toxicology, 93(4), 405–409. https://doi.org/10.1007/s00128-014-1363-x

    Article  PubMed  CAS  Google Scholar 

  • De Schamphelaere, K. A. C., Nys, C., & Janssen, C. R. (2014). Toxicity of lead (Pb) to freshwater green algae: Development and validation of a bioavailability model and inter-species sensitivity comparison. Aquatic Toxicology, 155, 348–359.

    Article  PubMed  Google Scholar 

  • El Shafay, S. M., Gaber, A., Alsanie, W. F., & Elshobary, M. E. (2021). Influence of nutrient manipulation on growth and biochemical constituent in Anabaena variabilis and Nostoc muscorum to enhance biodiesel production. Sustainability, 13(16), 9081. https://doi.org/10.3390/su13169081

    Article  CAS  Google Scholar 

  • Elshobary, M. E., Abo-Shady, A. M., Khairy, H. M., Essa, D., Zabed, H. M., Qi, X., & Abomohra, A.E.-F. (2019). Influence of nutrient supplementation and starvation conditions on the biomass and lipid productivities of Micractinium reisseri grown in wastewater for biodiesel production. Journal of Environmental Management, 250, 109529. https://doi.org/10.1016/j.jenvman.2019.109529

    Article  PubMed  CAS  Google Scholar 

  • Fidalgo, J. P., Cid, A., Torres, E., Sukenik, A., & Herrero, C. (1998). Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture, 166(1–2), 105–116. https://doi.org/10.1016/S0044-8486(98)00278-6

    Article  CAS  Google Scholar 

  • Folch, J., Lees, M., & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226(1), 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5

    Article  PubMed  CAS  Google Scholar 

  • Francius, G., Tesson, B., Dague, E., Martin-Jézéquel, V., & Dufrêne, Y. F. (2008). Nanostructure and nanomechanics of live Phaeodactylum tricornutum morphotypes. Environmental Microbiology, 10(5), 1344–1356. https://doi.org/10.1111/j.1462-2920.2007.01551.x

    Article  PubMed  CAS  Google Scholar 

  • Freshwater Algae of North America. (2003). Elsevier. https://doi.org/10.1016/B978-0-12-741550-5.X5000-4

  • Fu, L., Li, Q., Yan, G., Zhou, D., & Crittenden, J. C. (2019). Hormesis effects of phosphorus on the viability of Chlorella regularis cells under nitrogen limitation. Biotechnology for Biofuels, 12(1), 1–9.

    Article  Google Scholar 

  • Gagneux-Moreaux, S., Moreau, C., Gonzalez, J.-L., & Cosson, R. P. (2007). Diatom artificial medium (DAM): A new artificial medium for the diatom Haslea ostrearia and other marine microalgae. Journal of Applied Phycology, 19, 549–556.

    Article  CAS  Google Scholar 

  • Ganugapenta, S., Nadimikeri, J., Chinnapolla, S. R. R. B., Ballari, L., Madiga, R., Nirmala, K., & Tella, L. P. (2018). Assessment of heavy metal pollution from the sediment of Tupilipalem Coast, southeast coast of India. International Journal of Sediment Research, 33(3), 294–302.

    Article  Google Scholar 

  • Gipps, J. F., & Biro, P. (1978). The use of Chlorella vulgar is in a simple demonstration of heavy metal toxicity. Journal of Biological Education, 12(3), 207–214. https://doi.org/10.1080/00219266.1978.9654198

  • Gong, Y., Guo, X., Wan, X., Liang, Z., & Jiang, M. (2013). Triacylglycerol accumulation and change in fatty acid content of four marine oleaginous microalgae under nutrient limitation and at different culture ages: Lipid synthesis of four oil-rich microalgae. Journal of Basic Microbiology, 53(1), 29–36. https://doi.org/10.1002/jobm.201100487

    Article  PubMed  CAS  Google Scholar 

  • Gouveia, L., Coutinho, C., Mendonca, E., Batista, A. P., Sousa, I., Bandarra, N. M., & Raymundo, A. (2008). Functional biscuits with PUFA-ω3 from Isochrysis galbana. Journal of the Science of Food and Agriculture, 88(5), 891–896.

    Article  CAS  Google Scholar 

  • Griffiths, M. J., Van Hille, R. P., & Harrison, S. T. L. (2012). Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. Journal of Applied Phycology, 24(5), 989–1001. https://doi.org/10.1007/s10811-011-9723-y

    Article  CAS  Google Scholar 

  • Guillard, R. R. (1975). Culture of phytoplankton for feeding marine invertebrates. In Culture of marine invertebrate animals: Proceedings—1st conference on culture of marine invertebrate animals greenport (pp. 29–60). Springer US. https://doi.org/10.1007/978-1-4615-8714-9_3

  • Hallegraeff, G. M. (2010). Ocean climate change, phytoplankton community responses, and harmful algal blooms: A formidable predictive challenge 1. Journal of Phycology, 46(2), 2.

    Article  Google Scholar 

  • Haris, N., Manan, H., Jusoh, M., Khatoon, H., Katayama, T., & Kasan, N. A. (2022). Effect of different salinity on the growth performance and proximate composition of isolated indigenous microalgae species. Aquaculture Reports, 22, 100925. https://doi.org/10.1016/j.aqrep.2021.100925

    Article  Google Scholar 

  • Hawrot-Paw, M., Ratomski, P., Koniuszy, A., Golimowski, W., Teleszko, M., & Grygier, A. (2021). Fatty acid profile of microalgal oils as a criterion for selection of the best feedstock for biodiesel production. Energies, 14(21), 7334. https://doi.org/10.3390/en14217334

    Article  CAS  Google Scholar 

  • Hess, W. R., Garczarek, L., Pfreundt, U., & Partensky, F. (2016). Phototrophic microorganisms: The basis of the marine food web. In The Marine Microbiome: An Untapped Source of Biodiversity and Biotechnological Potential (pp. 57–97). https://doi.org/10.1007/978-3-319-33000-6_3

  • Hess, D., & Quinn, J. C. (2018). Impact of inorganic contaminants on microalgal biofuel production through multiple conversion pathways. Biomass and Bioenergy, 119, 237–245.

    Article  CAS  Google Scholar 

  • Hockin, N. L., Mock, T., Mulholland, F., Kopriva, S., & Malin, G. (2012). The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiology, 158(1), 299–312. https://doi.org/10.1104/pp.111.184333

    Article  PubMed  CAS  Google Scholar 

  • Huang, X., Huang, Z., Wen, W., & Yan, J. (2013). Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). Journal of Applied Phycology, 25, 129–137.

    Article  Google Scholar 

  • Huesemann, M., Edmundson, S., Gao, S., Negi, S., Dale, T., Gutknecht, A., Daligault, H. E., Carr, C. K., Freeman, J., Kern, T., Starkenburg, S. R., Gleasner, C. D., Louie, W., Kruk, R., & McGuire, S. (2023). DISCOVR strain pipeline screening – Part I: Maximum specific growth rate as a function of temperature and salinity for 38 candidate microalgae for biofuels production. Algal Research, 71, 102996. https://doi.org/10.1016/j.algal.2023.102996

    Article  Google Scholar 

  • Hutchinson, T. C., & Stokes, P. M. (1975). Heavy metal toxicity and algal bioassays. ASTM International.

    Book  Google Scholar 

  • Janssen, J. H., Lamers, P. P., De Vos, R. C. H., Wijffels, R. H., & Barbosa, M. J. (2019). Translocation and de novo synthesis of eicosapentaenoic acid (EPA) during nitrogen starvation in Nannochloropsis gaditana. Algal Research, 37, 138–144. https://doi.org/10.1016/j.algal.2018.11.025

    Article  Google Scholar 

  • Jayaraju, N., Sundara Raja Reddy, B. C., & Reddy, K. R. (2009). Heavy metal pollution in reef corals of Tuticorin Coast, Southeast Coast of India. Soil and Sediment Contamination, 18(4), 445–454.

    Article  Google Scholar 

  • Ji, Y., Xie, X., & Wang, G. (2018). Effects of the heavy metal cadmium on photosynthetic activity and the xanthophyll cycle in Phaeodactylum tricornutum. Journal of Oceanology and Limnology, 36(6), Article 6. https://doi.org/10.1007/s00343-019-7160-y

  • Jonathan, M. P., & Ram Mohan, V. (2003). Heavy metals in sediments of the inner shelf off the Gulf of Mannar, South East Coast of India. Marine Pollution Bulletin, 46(2), 263–268. https://doi.org/10.1016/S0025-326X(02)00484-8

    Article  PubMed  CAS  Google Scholar 

  • Jothibasu, K., Muniraj, I., Jayakumar, T., Ray, B., Dhar, D. W., Karthikeyan, S., & Rakesh, S. (2022). Impact of microalgal cell wall biology on downstream processing and nutrient removal for fuels and value-added products. Biochemical Engineering Journal, 187, 108642.

    Article  CAS  Google Scholar 

  • Juneau, P., Dewez, D., Matsui, S., Kim, S. G., & Popovic, R. (2001). Evaluation of different algal species sensitivity to mercury and metolachlor by PAM-fluorometry. Chemosphere, 45(4–5), 589–598. https://doi.org/10.1016/S0045-6535(01)00034-0

  • Juneja, A., Ceballos, R. M., & Murthy, G. S. (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review. Energies, 6(9), 4607–4638.

    Article  Google Scholar 

  • Kamp-Nielsen, L. (1971). The effect of deleterious concentrations of mercury on the photosynthesis and growth of Chlorella pyrenoidosa. Physiologia Plantarum, 24(3), 556–561.

    Article  Google Scholar 

  • Karcheva, Z., Georgieva, Z., Tomov, A., Petrova, D., Zhiponova, M., Vasileva, I., & Chaneva, G. (2022). Heavy metal stress response of microalgal strains Arthronema africanum and Coelastrella sp. BGV. Biorisk, 17, 83–94. https://doi.org/10.3897/biorisk.17.77483

    Article  Google Scholar 

  • Khan, M. J., Rai, A., Ahirwar, A., Sirotiya, V., Mourya, M., Mishra, S., Schoefs, B., Marchand, J., Bhatia, S. K., Varjani, S., & Vinayak, V. (2021). Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: Recent trends and innovations. Bioengineered, 12(2), 9531–9549. https://doi.org/10.1080/21655979.2021.1996748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan, F., Shahid, A., Zhu, H., Wang, N., Javed, M. R., Ahmad, N., Xu, J., Alam, M. A., & Mehmood, M. A. (2022). Prospects of algae-based green synthesis of nanoparticles for environmental applications. Chemosphere, 293, 133571.

    Article  PubMed  CAS  Google Scholar 

  • Kumaran, M., Palanisamy, K. M., Bhuyar, P., Maniam, G. P., Rahim, M. H. A., & Govindan, N. (2023). Agriculture of microalgae Chlorella vulgaris for polyunsaturated fatty acids (PUFAs) production employing palm oil mill effluents (POME) for future food, wastewater, and energy nexus. Energy Nexus, 9, 100169.

    Article  CAS  Google Scholar 

  • Lebsky, V. K. (2004). Lipid defense response of Chlorella as theoretical background in wastewater treatment for pollutants. Revista Mexicana De Fisica Supplement, 50(1), 4–6.

    ADS  CAS  Google Scholar 

  • Le Faucheur, S., Campbell, P. G., Fortin, C., & Slaveykova, V. I. (2014). Interactions between mercury and phytoplankton: Speciation, bioavailability, and internal handling. Environmental Toxicology and Chemistry, 33(6), 1211–1224. https://doi.org/10.1002/etc.2424

  • Lelong, A., Hegaret, H., Soudant, P., & Bates, S. S. (2012). Pseudo-nitzschia (Bacillariophyceae) species, domoic acid and amnesic shellfish poisoning: Revisiting previous paradigms. Phycologia, 51(2), 168–216.

    Article  CAS  Google Scholar 

  • León-Vaz, A., León, R., Giráldez, I., Vega, J. M., & Vigara, J. (2021). Impact of heavy metals in the microalga Chlorella sorokiniana and assessment of its potential use in cadmium bioremediation. Aquatic Toxicology, 239, 105941. https://doi.org/10.1016/j.aquatox.2021.105941

    Article  PubMed  CAS  Google Scholar 

  • Levy, J. L., Stauber, J. L., & Jolley, D. F. (2007). Sensitivity of marine microalgae to copper: The effect of biotic factors on copper adsorption and toxicity. Science of the Total Environment, 387(1–3), 141–154.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Liang, M. H., Wang, L., Wang, Q., Zhu, J., & Jiang, J. G. (2019). High-value bioproducts from microalgae: Strategies and progress. Critical Reviews in Food Science and Nutrition, 59(15), 2423–2441. https://doi.org/10.1080/10408398.2018.1455030

  • Liang, Y., Mai, K., & Sun, S. (2005). Differences in growth, total lipid content and fatty acid composition among 60 clones of Cylindrotheca fusiformis. Journal of Applied Phycology, 17(1), 61–65. https://doi.org/10.1007/s10811-005-5525-4

    Article  CAS  Google Scholar 

  • Liyanaarachchi, V. C., Premaratne, M., Ariyadasa, T. U., Nimarshana, P. H. V., & Malik, A. (2021). Two-stage cultivation of microalgae for production of high-value compounds and biofuels: A review. Algal Research, 57, 102353.

    Article  Google Scholar 

  • Lu, Q., Li, H., Xiao, Y., & Liu, H. (2021). A state-of-the-art review on the synthetic mechanisms, production technologies, and practical application of polyunsaturated fatty acids from microalgae. Algal Research, 55, 102281. https://doi.org/10.1016/j.algal.2021.102281

    Article  Google Scholar 

  • Ma, J., Zhou, B., Chen, F., & Pan, K. (2021). How marine diatoms cope with metal challenge: Insights from the morphotype-dependent metal tolerance in Phaeodactylum tricornutum. Ecotoxicology and Environmental Safety, 208, 111715.

    Article  PubMed  CAS  Google Scholar 

  • Mandal, S., & Mallick, N. (2012). Biodiesel production by the green microalga Scenedesmus obliquus in a recirculatory aquaculture system. Applied and Environmental Microbiology, 78(16), 5929–5934.

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  • Mehta, S. K., & Gaur, J. P. (2005). Use of algae for removing heavy metal ions from wastewater: progress and prospects. Critical Reviews in Biotechnology, 25(3), 113–152. https://doi.org/10.1080/07388550500248571

  • Miazek, K., Iwanek, W., Remacle, C., Richel, A., & Goffin, D. (2015). Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: A review. International Journal of Molecular Sciences, 16(10), Article 10. https://doi.org/10.3390/ijms161023929

  • Minhas, A. K., Hodgson, P., Barrow, C. J., & Adholeya, A. (2016). A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Frontiers in Microbiology, 7, 546.

    Article  PubMed  PubMed Central  Google Scholar 

  • Monteiro, C. M., Fonseca, S. C., Castro, P. M., & Malcata, F. X. (2011). Toxicity of cadmium and zinc on two microalgae, Scenedesmus obliquus and Desmodesmus pleiomorphus, from Northern Portugal. Journal of Applied Phycology, 23, 97–103.

    Article  CAS  Google Scholar 

  • Morel, F. M., Kraepiel, A. M., & Amyot, M. (1998). The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics, 29(1), 543–566.

    Article  Google Scholar 

  • Mu, W., Chen, Y., Liu, Y., Pan, X., & Fan, Y. (2018). Toxicological effects of cadmium and lead on two freshwater diatoms. Environmental Toxicology and Pharmacology, 59, 152–162. https://doi.org/10.1016/j.etap.2018.03.013

    Article  PubMed  CAS  Google Scholar 

  • Nanda, M., Jaiswal, K. K., Kumar, V., Vlaskin, M. S., Gautam, P., Bahuguna, V., & Chauhan, P. (2021). Micro-pollutant Pb(II) mitigation and lipid induction in oleaginous microalgae Chlorella sorokiniana UUIND6. Environmental Technology & Innovation, 23, 101613. https://doi.org/10.1016/j.eti.2021.101613

    Article  CAS  Google Scholar 

  • Naser, H. A. (2013). Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: A review. Marine Pollution Bulletin, 72(1), Article 1. https://doi.org/10.1016/j.marpolbul.2013.04.030

  • Nayak, M., Dhanarajan, G., Dineshkumar, R., & Sen, R. (2018). Artificial intelligence driven process optimization for cleaner production of biomass with co-valorization of wastewater and flue gas in an algal biorefinery. Journal of Cleaner Production, 201, 1092–1100. https://doi.org/10.1016/j.jclepro.2018.08.048

    Article  CAS  Google Scholar 

  • Nethaji, S., Kalaivanan, R., Viswam, A., & Jayaprakash, M. (2017). Geochemical assessment of heavy metals pollution in surface sediments of Vellar and Coleroon estuaries, southeast coast of India. Marine Pollution Bulletin, 115(1–2), 469–479.

    Article  PubMed  CAS  Google Scholar 

  • O’Fallon, J. V., Busboom, J. R., Nelson, M. L., & Gaskins, C. T. (2007). A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. Journal of Animal Science, 85(6), 1511–1521.

    Article  PubMed  Google Scholar 

  • OECD. (2006). Test no. 201: Alga, growth inhibition test. OECD Publishing. https://doi.org/10.1787/9789264069923-en

    Book  Google Scholar 

  • Osman, M. E. H., Abo-Shady, A. M., Gheda, S. F., Desoki, S. M., & Elshobary, M. E. (2023). Unlocking the potential of microalgae cultivated on wastewater combined with salinity stress to improve biodiesel production. Environmental Science and Pollution Research, 30(53), 114610–114624. https://doi.org/10.1007/s11356-023-30370-6

    Article  PubMed  CAS  Google Scholar 

  • Ötleş, S., & Pire, R. (2001). Fatty acid composition of Chlorella and Spirulina microalgae species. Journal of AOAC International, 84(6), 1708–1714.

    Article  PubMed  Google Scholar 

  • Pacheco, S., Medina, M., Valencia, F., & Tapia, J. (2006). Removal of inorganic mercury from polluted water using structured nanoparticles. Journal of Environmental Engineering, 132(3), 342–349.

    Article  CAS  Google Scholar 

  • Pandey, G., & Madhuri, S. (2014). Heavy metals causing toxicity in animals and fishes. Research Journal of Animal, Veterinary and Fishery Sciences, 2(2), 17–23.

    CAS  Google Scholar 

  • Pandit, P. R., Fulekar, M. H., & Karuna, M. S. L. (2017). Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris. Environmental Science and Pollution Research, 24(15), 13437–13451. https://doi.org/10.1007/s11356-017-8875-y

    Article  PubMed  CAS  Google Scholar 

  • Peng, Y., Deng, A., Gong, X., Li, X., & Zhang, Y. (2017). Coupling process study of lipid production and mercury bioremediation by biomimetic mineralized microalgae. Bioresource Technology, 243, 628–633. https://doi.org/10.1016/j.biortech.2017.06.165

    Article  PubMed  CAS  Google Scholar 

  • Permana, R., & Akbarsyah, N. (2021). Phytoplankton susceptibility towards toxic heavy metal cadmium: Mechanism and its recent updates. World News of Natural Sciences, 38, 83–97.

    CAS  Google Scholar 

  • Pham, T.-L., Dao, T.-S., Bui, H. N., Pham, T. K. N., Ngo, T. T. H., & Bui, H. M. (2020). Lipid production combined with removal and bioaccumulation of Pb by Scenedesmus sp. Green Alga. Polish Journal of Environmental Studies, 29(2), 1785–1791.

    Article  CAS  Google Scholar 

  • Pinto, E. P., Paredes, E., & Bellas, J. (2023). Influence of microplastics on the toxicity of chlorpyrifos and mercury on the marine microalgae Rhodomonas lens. Science of the Total Environment, 857, 159605. https://doi.org/10.1016/j.scitotenv.2022.159605

    Article  PubMed  ADS  CAS  Google Scholar 

  • Piorreck, M., Baasch, K.-H., & Pohl, P. (1984). Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry, 23(2), 207–216. https://doi.org/10.1016/S0031-9422(00)80304-0

    Article  CAS  Google Scholar 

  • Piotrowska-Niczyporuk, A., Bajguz, A., Talarek, M., Bralska, M., & Zambrzycka, E. (2015). The effect of lead on the growth, content of primary metabolites, and antioxidant response of green alga Acutodesmus obliquus (Chlorophyceae). Environmental Science and Pollution Research, 22(23), Article 23. https://doi.org/10.1007/s11356-015-5118-y

  • Praveenkumar, R., Shameera, K., Mahalakshmi, G., Akbarsha, M. A., & Thajuddin, N. (2012). Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: Evaluation for biodiesel production. Biomass and Bioenergy, 37, 60–66.

    Article  CAS  Google Scholar 

  • P.S, C, Sanyal, D., Dasgupta, S., & Banik, A. (2021). Cadmium biosorption and biomass production by two freshwater microalgae Scenedesmus acutus and Chlorella pyrenoidosa: An integrated approach. Chemosphere, 269, 128755. https://doi.org/10.1016/j.chemosphere.2020.128755

    Article  PubMed  CAS  Google Scholar 

  • Purushanahalli Shivagangaiah, C., Sanyal, D., Dasgupta, S., & Banik, A. (2021). Phycoremediation and photosynthetic toxicity assessment of lead by two freshwater microalgae Scenedesmus Acutus and Chlorella pyrenoidosa. Physiologia Plantarum, l.13368. https://doi.org/10.1111/ppl.13368

  • Rahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environmental Monitoring and Assessment, 191(7), 419. https://doi.org/10.1007/s10661-019-7528-7

    Article  PubMed  CAS  Google Scholar 

  • Rai, L. C., Gaur, J. P., & Kumar, H. D. (1981b). Protective effects of certain environmental factors on the toxicity of zinc, mercury, and methylmercury to Chlorella vulgaris. Environmental Research, 25(2), 250–259. https://doi.org/10.1016/0013-9351(81)90026-8

    Article  PubMed  ADS  CAS  Google Scholar 

  • Rai, L. C., Gaur, J. P., & Kumar, H. D. (1981a). Protective effects of certain environmental factors on the toxicity of zinc, mercury, and methylmercury to Chlorella vulgaris. Environmental Research, 25(2), Article 2. https://doi.org/10.1016/0013-9351(81)90026-8

  • Rajaram, R., & Ganeshkumar, A. (2019). Anthropogenic influence of heavy metal pollution on the Southeast Coast of India. In Coastal zone management (pp. 381–399). Elsevier. https://doi.org/10.1016/B978-0-12-814350-6.00016-1

  • Ramazanov, A., & Ramazanov, Z. (2006). Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycological Research, 54(4), 255–259.

    Article  CAS  Google Scholar 

  • Rani, V., Deepika, S., Abarna, K., & Uma, A. (2022). Isolation, identification, and optimization of growth conditions for the marine microalgae isolated from the Gulf of Mannar, South-east coast of India. Regional Studies in Marine Science, 51, 102189. https://doi.org/10.1016/j.rsma.2022.102189

    Article  Google Scholar 

  • Rao, J. V., Kavitha, P., Srikanth, K., Usman, P. K., & Rao, T. G. (2007). Environmental contamination using accumulation of metals in marine sponge, Sigmadocia fibulata inhabiting the coastal waters of Gulf of Mannar, India. Toxicological & Environmental Chemistry, 89(3), 487–498.

    Article  CAS  Google Scholar 

  • Rita Sulistya Dewi, E., & Nuravivah, R. (2018). Potential of microalgae Chlorella vulgaris as bioremediation agents of heavy metal Pb (Lead) on culture media. ES Web of Conferences, 31, 05010. https://doi.org/10.1051/e3sconf/20183105010

    Article  CAS  Google Scholar 

  • Rizwan, M., Mujtaba, G., Memon, S. A., Lee, K., & Rashid, N. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renewable and Sustainable Energy Reviews, 92, 394–404.

    Article  Google Scholar 

  • Samarasekara, V. N. (1996). Local perceptions of environmental change in a tropical coastal wetland: The case of Koggala Lagoon, Galle, Sri Lanka. University of London, School of Oriental and African Studies (United Kingdom).

  • Samson, G., Morissette, J. C., & Popovic, R. (1990). Determination of four apparent mercury interaction sites in photosystem II by using a new modification of the Stern-Volmer analysis. Biochemical and Biophysical Research Communications, 166(2), 873–878. https://doi.org/10.1016/0006-291X(90)90891-P

  • Santin, A., Russo, M. T., Ferrante, M. I., Balzano, S., Orefice, I., & Sardo, A. (2021). Highly valuable polyunsaturated fatty acids from microalgae: Strategies to improve their yields and their potential exploitation in aquaculture. Molecules, 26(24), 7697. https://doi.org/10.3390/molecules26247697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shalini, R., Jeyasekaran, G., Shakila, R. J., Sundhar, S., Arisekar, U., Jawahar, P., Aanand, S., Sivaraman, B., Malini, A. H., & Surya, T. (2021). Dietary intake of trace elements from commercially important fish and shellfish of Thoothukudi along the southeast coast of India and implications for human health risk assessment. Marine Pollution Bulletin, 173, 113020. https://doi.org/10.1016/j.marpolbul.2021.113020

    Article  PubMed  CAS  Google Scholar 

  • Sharma, K. K., Schuhmann, H., & Schenk, P. M. (2012). High lipid induction in microalgae for biodiesel production. Energies, 5(5), 1532–1553.

    Article  CAS  Google Scholar 

  • Singh, P., Guldhe, A., Kumari, S., Rawat, I., & Bux, F. (2015). Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochemical Engineering Journal, 94, 22–29.

    Article  CAS  Google Scholar 

  • Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96. https://doi.org/10.1263/jbb.101.87

    Article  PubMed  CAS  Google Scholar 

  • Stauber, J. L., & Jeffrey, S. W. (1988). Photosynthetic pigments in fifty-one species of marine diatoms 1. Journal of Phycology, 24(2), 158–172.

    CAS  Google Scholar 

  • Stenger-Kovács, C., Béres, V. B., Buczkó, K., Al-Imari, J. T., Lázár, D., Padisák, J., & Lengyel, E. (2023). Review of phenotypic response of diatoms to salinization with biotechnological relevance. Hydrobiologia, 850(20), 4665–4688. https://doi.org/10.1007/s10750-023-05194-7

    Article  Google Scholar 

  • Su, C.-H., Chien, L.-J., Gomes, J., Lin, Y.-S., Yu, Y.-K., Liou, J.-S., & Syu, R.-J. (2011). Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. Journal of Applied Phycology, 23(5), 903–908. https://doi.org/10.1007/s10811-010-9609-4

    Article  CAS  Google Scholar 

  • Su, D., Li, X., Liu, S., & Bu, Y. (2022). Research progress on the effects of salt stress on photosynthesis and lipids of microalgae. Molecular Soil Biology, 13(1), 1–6. https://doi.org/10.5376/msb.2022.13.0001

  • Sun, J., Cheng, J., Yang, Z., Li, K., Zhou, J., & Cen, K. (2015). Microstructures and functional groups of Nannochloropsis sp. cells with arsenic adsorption and lipid accumulation. Bioresource Technology, 194, 305–311. https://doi.org/10.1016/j.biortech.2015.07.041

    Article  PubMed  CAS  Google Scholar 

  • Sun, X.-M., Ren, L.-J., Zhao, Q.-Y., Ji, X.-J., & Huang, H. (2019). Enhancement of lipid accumulation in microalgae by metabolic engineering. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1864(4), 552–566. https://doi.org/10.1016/j.bbalip.2018.10.004

    Article  PubMed  CAS  Google Scholar 

  • Sun, C., Li, W., Xu, Y., Hu, N., Ma, J., Cao, W., Sun, S., Hu, C., Zhao, Y., & Huang, Q. (2020). Effects of carbon nanotubes on the toxicities of copper, cadmium and zinc toward the freshwater microalgae Scenedesmus obliquus. Aquatic Toxicology, 224, 105504. https://doi.org/10.1016/j.aquatox.2020.105504

    Article  PubMed  CAS  Google Scholar 

  • Tan, K. W. M., & Lee, Y. K. (2016). The dilemma for lipid productivity in green microalgae: Importance of substrate provision in improving oil yield without sacrificing growth. Biotechnology for Biofuels, 9(1), 255. https://doi.org/10.1186/s13068-016-0671-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang, W., He, M., Chen, B., Ruan, G., Xia, Y., Xu, P., Song, G., Bi, Y., & Hu, B. (2023). Investigation of toxic effect of mercury on Microcystis aeruginosa: Correlation between intracellular mercury content at single cells level and algae physiological responses. Science of the Total Environment, 858, 159894. https://doi.org/10.1016/j.scitotenv.2022.159894

    Article  PubMed  ADS  CAS  Google Scholar 

  • Tripathi, S., Arora, N., Gupta, P., Pruthi, P. A., Poluri, K. M., & Pruthi, V. (2019). Microalgae: An emerging source for mitigation of heavy metals and their potential implications for biodiesel production. In Advanced biofuels (pp. 97–128). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102791-2.00004-0

  • Ubando, A. T., Africa, A. D. M., Maniquiz-Redillas, M. C., Culaba, A. B., Chen, W.-H., & Chang, J.-S. (2021). Microalgal biosorption of heavy metals: A comprehensive bibliometric review. Journal of Hazardous Materials, 402, 123431. https://doi.org/10.1016/j.jhazmat.2020.123431

    Article  PubMed  CAS  Google Scholar 

  • Ulaganathan, A., Robinson, J. S., Rajendran, S., Geevaretnam, J., Pandurangan, P., & Durairaj, S. (2022). Effect of different thermal processing methods on potentially toxic metals in the seafood, Penaeus vannamei, and the related human health risk assessment. Journal of Food Composition and Analysis, 105, 104259. https://doi.org/10.1016/j.jfca.2021.104259

    Article  CAS  Google Scholar 

  • Venkata Mohan, S., & Devi, M. P. (2014). Salinity stress induced lipid synthesis to harness biodiesel during dual mode cultivation of mixotrophic microalgae. Bioresource Technology, 165, 288–294. https://doi.org/10.1016/j.biortech.2014.02.103

    Article  PubMed  CAS  Google Scholar 

  • Walne, P. R. (1970). Studies on the food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea, Crassostrea, Mercenaria and Mytilus. Fishery Investigations Series 2, 26(5).

  • Wan, X., Li, T., Zhong, R., Chen, H., Xia, X., Gao, L., Gao, X., Liu, B., Zhang, H., & Zhao, C. (2019). Anti-diabetic activity of PUFAs-rich extracts of Chlorella pyrenoidosa and Spirulina platensis in rats. Food and Chemical Toxicology, 128, 233–239.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, X., Li, W., Jin, M., Zhang, L., Qin, L., & Geng, W. (2023). Responses and tolerance mechanisms of microalgae to heavy metal stress: A review. Marine Environmental Research, 183, 105805. https://doi.org/10.1016/j.marenvres.2022.105805

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z.-K., Niu, Y.-F., Ma, Y.-H., Xue, J., Zhang, M.-H., Yang, W.-D., Liu, J.-S., Lu, S.-H., Guan, Y., & Li, H.-Y. (2013b). Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnology for Biofuels, 6(1), 67. https://doi.org/10.1186/1754-6834-6-67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, Z.-K., Niu, Y.-F., Ma, Y.-H., Xue, J., Zhang, M.-H., Yang, W.-D., Liu, J.-S., Lu, S.-H., Guan, Y., & Li, H.-Y. (2013a). Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnology for Biofuels, 6(1), Article 1. https://doi.org/10.1186/1754-6834-6-67

  • Yee, W., Tang, S. G. H., Phua, P. S. P., & Megawarnan, H. (2019). Long-term maintenance of 23 strains of freshwater microalgae on solid microbiological culture media: A preliminary study. Algal Research, 41, 101516.

    Article  Google Scholar 

  • Ying, L., Kang-sen, M., & Shi-chun, S. (2002). Effects of harvest stage on the total lipid and fatty acid composition of four Cylindrotheca strains. Chinese Journal of Oceanology and Limnology, 20(2), 157–161.

    Article  ADS  Google Scholar 

  • Zamani, N., Rasekh, F., Moradshahi, A., & Kholdebarin, B. (2009). Physiological responses of dunaliella tertiolecta to hg2+-induced oxidative stress. Iranian Journal of Science, 33(1), 65–74. https://doi.org/10.22099/ijsts.2009.2203

  • Zamani-Ahmadmahmoodi, R., Malekabadi, M. B., Rahimi, R., & Johari, S. A. (2020). Aquatic pollution caused by mercury, lead, and cadmium affects cell growth and pigment content of marine microalga, Nannochloropsis oculata. Environmental Monitoring and Assessment, 192(6), Article 6. https://doi.org/10.1007/s10661-020-8222-5

  • Zhao, Y., Song, X., Yu, L., Han, B., Li, T., & Yu, X. (2019). Influence of cadmium stress on the lipid production and cadmium bioresorption by Monoraphidium sp. QLY-1. Energy Conversion and Management, 188, 76–85. https://doi.org/10.1016/j.enconman.2019.03.041

    Article  CAS  Google Scholar 

  • Zhu, L. (2015). Microalgal culture strategies for biofuel production: A review. Biofuels, Bioproducts and Biorefining, 9(6), 801–814. 

Download references

Acknowledgements

The authors sincerely thank Tamil Nadu Dr. J. Jayalalithaa Fisheries University for the extending facilities and support to carry out this research as a part of the research work.

Author information

Authors and Affiliations

Authors

Contributions

Rishikesh Venkatrao Kadam: Investigation, Validation, Visualization, Writing – original draft.

V. Rani: Conceptualization, Resources, Supervision, Writing – review & editing.

P. Padmavathy: Conceptualization, Writing – review & editing.

R. Shalini: Validation, Visualization & editing.

M.J Thamarai Selvi: Conceptualization, Formal analysis.

Swapnil Ananda Narsale: Formal analysis & Conceptualization.

Rishikesh Venkatrao Kadam: investigation, validation, visualization, writing—original draft. V. Rani: conceptualization, resources, supervision, writing—review and editing. P. Padmavathy: conceptualization, writing—review and editing. R. Shalini: investigation, validation, visualization. M. J. Thamarai Selvi: conceptualization and formal analysis. Swapnil Ananda Narsale: conceptualization and formal analysis.

Corresponding author

Correspondence to V. Rani.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadam, R.V., Rani, V., Padmavathy, P. et al. Assessment of heavy metals and environmental stress conditions on the production potential of polyunsaturated fatty acids (PUFAs) in indigenous microalgae isolated from the Gulf of Mannar coastal waters. Environ Monit Assess 196, 301 (2024). https://doi.org/10.1007/s10661-024-12447-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12447-y

Keywords

Navigation