Skip to main content

Advertisement

Log in

Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Reserve lipids of microalgae are promising for biodiesel production. However, optimization of cultivation conditions for both biomass yield and lipid production of microalgae is a contradictory problem because required conditions for both targets are different. In this study, a two-stage cultivation strategy is proposed to enhance lipid production of the microalga Nannochloropsis oculata. Biomass growth and lipid production were carried out in two separate and non-interacting stages. In first-stage cultivation, microalgae were cultivated in optimal conditions for cell growth. Then, microalgae were harvested and transferred into a growth-limited environment, thus enhancing lipid production of microalgae. Here, optimization of the lipid production stage (second stage) with respect to different levels of inoculum concentration, salinity of culture broth, and intensity of irradiance was performed. The results show that irradiance exhibits a significant influence on lipid production. The highest lipid productivity of 0.324 g L−1 day−1 was obtained with an inoculum concentration of 2.3 g L−1, a salinity of 35 g L−1, and an irradiance of 500 μmol photons m−2 s−1. The final yield of lipid obtained from the two-stage process was 2.82-times higher than that from traditional single-stage batch cultivation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aflalo C, Meshulam Y, Zarka A, Boussiba S (2007) On the relative efficiency of two- vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol Bioeng 98:300–305

    Article  PubMed  CAS  Google Scholar 

  • Boussiba S, Vonshak A, Cohen Z, Avissar Y, Richmond A (1987) Lipid and biomass production by the halotolerant microalga Nannochloropsis salina. Biomass 12:37–47

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  PubMed  CAS  Google Scholar 

  • Dunstan GA, Volkman JK, Barrett SM, Garland CD (1993) Changes in the lipid composition and maximization of the polyunsaturated fatty acid content of three microalgae grown in mass culture. J Appl Phycol 5:71–83

    Article  CAS  Google Scholar 

  • Fabregas J, Otero A, Maseda A, Dominguez A (2001) Two-stage cultures for the production of Astaxanthin from Haematococcus pluvialis. J Biotechnol 89:65–71

    Article  PubMed  CAS  Google Scholar 

  • Fabregas J, Maseda A, Dominguez A, Ferreira M, Otero A (2002) Changes in the cell composition of the marine microalga, Nannochloropsis gaditana, during a light:dark cycle. Biotechnol Lett 24:1699–1703

    Article  CAS  Google Scholar 

  • Fang X, Wei C, Cai ZL, Fan O (2004) Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Nannochloropsis sp. J Appl Phycol 16:499–503

    Article  CAS  Google Scholar 

  • Gao CF, Zhai Y, Ding Y, Wu QY (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy 87:756–761

    Article  CAS  Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Grobbelaar JU (2007) Photosynthetic characteristics of Spirulina platensis grown in commercial-scale open outdoor raceway ponds: what do the organisms tell us? J Appl Phycol 19:591–598

    Article  CAS  Google Scholar 

  • Hodgson PA, Henderson RJ, Sargent JR, Leftley JW (1991) Patterns of variation in the lipid class and fatty acid composition of Nannochloropsis oculata (Eustigmatophyceae) during batch culture I. The growth cycle. J Appl Phycol 3:169–181

    Article  CAS  Google Scholar 

  • Hsieh CH, Wu WT (2009) A novel photobioreactor with transparent rectangular chambers for cultivation of microalgae. Biochem Eng J 46:300–305

    Article  CAS  Google Scholar 

  • Hu HH, Gao KS (2006) Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnol Lett 28:987–992

    Article  PubMed  CAS  Google Scholar 

  • Huang GH, Chen F, Wei D, Zhang XW, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    Article  CAS  Google Scholar 

  • Jacob-Lopes E, Revah S, Hernandez S, Shirai K, Franco TT (2009) Development of operational strategies to remove carbon dioxide in photobioreactors. Chem Eng J 153:120–126

    Article  CAS  Google Scholar 

  • Lee AK, Lewis DM, Ashman PJ (2009) Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. J Appl Phycol 21:559–567

    Article  CAS  Google Scholar 

  • Lepage G, Roy CC (1984) Improved Recovery of fatty acid through direct trans-esterification without prior extraction or purification. J Lipid Res 25:1391–1396

    PubMed  CAS  Google Scholar 

  • Li YQ, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    Article  PubMed  CAS  Google Scholar 

  • Lombardi AT, Wangersky PJ (1991) Influence of phosphorus and slicon on lipid class production by the marine diatom Chaetoceros gracilis grown in turbidostat cage cultures. Mar Ecol Prog Ser 77:39–47

    Article  CAS  Google Scholar 

  • McGinnis KM, Dempster TA, Sommerfeld MR (1997) Characterization of the growth and lipid content of the diatom Chaetoceros muelleri. J Appl Phycol 9:19–24

    Article  CAS  Google Scholar 

  • Ratledge C (2002) Regulation of lipid accumulation in oleaginous micro-organisms. Biochem Soc Trans 30:1047–1050

    Article  PubMed  CAS  Google Scholar 

  • Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30:972–979

    Article  CAS  Google Scholar 

  • Renaud SM, Parry DL, Thinh LV, Kuo C, Padovan A, Sammy N (1991) Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture. J Appl Phycol 3:43–53

    Article  CAS  Google Scholar 

  • Sandnes JM, Kallqvist T, Wenner D, Gislerod HR (2005) Combined influence of light and temperature on growth rates of Nannochloropsis oceanica: linking cellular responses to large-scale biomass production. J Appl Phycol 17:515–525

    Article  Google Scholar 

  • Scragg AH, Illman AM, Carden A, Shales SW (2002) Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy 23:67–73

    Article  CAS  Google Scholar 

  • Scragg AH, Morrison J, Shales SW (2003) The use of a fuel containing Chlorella vulgaris in a diesel engine. Enzyme Microb Technol 33:884–889

    Article  CAS  Google Scholar 

  • Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20:245–251

    Article  CAS  Google Scholar 

  • Su CH, Giridhar R, Chen CW, Wu WT (2007) A novel approach for medium formulation for growth of a microalga using motile intensity. Bioresour Technol 98:3012–3016

    Article  PubMed  CAS  Google Scholar 

  • Su CH, Fu CC, Chang YC, Nair GR, Ye JL, Chu IM, Wu WT (2008) Simultaneous estimation of chlorophyll a and lipid contents in microalgae by three-color analysis. Biotechnol Bioeng 99:1034–1039

    Article  PubMed  CAS  Google Scholar 

  • Sukenik A, Zmora O, Carmeli Y (1993) Biochemical quality of marine unicellular algae with special emphasis on lipid composition 2. Nannochloropsis sp. Aquaculture 117:313–326

    Article  CAS  Google Scholar 

  • Takagi M, Karseno, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226

  • Xu NJ, Zhang XC, Fan X, Han LJ, Zeng CK, Tseng CK (2001) Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. (Eustigmatophyta). J Appl Phycol 13:463–469

    Article  CAS  Google Scholar 

  • Xu H, Miao XL, Wu QY (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  PubMed  CAS  Google Scholar 

  • Yu ET, Zendejas FJ, Lane PD, Gaucher S, Simmonx BA, Lane TW (2009) Triacylglycerol accumulation and profiling in the model diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum (Baccilariophyceae) during starvation. J Appl Phycol 21:669–681

    Article  CAS  Google Scholar 

  • Zhang DH, Lee YK (2001) Two-step process for ketocarotenoid production by a green alga, Chlorococcum sp. strain MA-1. Appl Microbiol Biotechnol 55:537–540

    Article  PubMed  CAS  Google Scholar 

  • Zhila NO, Kalacheva GS, Volova TG (2005) Influence of nitrogen deficiency on biochemical composition of the green alga Botryococcus. J Appl Phycol 17:309–315

    Article  CAS  Google Scholar 

  • Zou N, Richmond A (2000) Light-path length and population density in photoacclimation of Nannochloropsis sp. (Eustigmatophyceae). J Appl Phycol 12:349–354

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Hung Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, CH., Chien, LJ., Gomes, J. et al. Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. J Appl Phycol 23, 903–908 (2011). https://doi.org/10.1007/s10811-010-9609-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-010-9609-4

Keywords

Navigation